일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- data science
- 빅데이타
- c++
- Artificial Intelligence
- 빅 데이터
- Big Data
- MongoDB
- 김양재 목사
- WebGL
- 통계
- 빅 데이타
- openCV
- nodeJS
- 몽고디비
- No SQL
- 인공지능
- 우리들교회
- probability
- 빅데이터
- Deep learning
- 김양재 목사님
- 확률
- Machine Learning
- 김양재
- R
- Statistics
- node.js
- 주일설교
- 딥러닝
- 데이터 과학
- Today
- Total
목록opencv cuda (2)
Scientific Computing & Data Science
이번 포스팅에서는 OpenCV의 CUDA 라이브러리 함수를 이용하여 Canny Edge Detector에 대한 연산 성능을 비교해 보도록 하겠습니다. 연산에 사용할 이미지는 Pixar Animation의 Up의 포스터입니다. 1. CPU[Example Code] 12345678910111213141516171819202122232425#include #include "opencv2/opencv.hpp" using namespace cv; int main( int argc, _TCHAR* argv[] ){ const int64 start = getTickCount(); cv::Mat src = cv::imread( "up.jpg", 0 ); if( !src.data ) exit( 1 ); cv::Mat d..
OpenCV의 cuda::DeviceInfo() 함수를 이용하여 각자의 CUDA Device의 정보를 출력하는 소스는 다음과 같습니다:Example Code12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914..