일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 김양재
- nodeJS
- 확률
- 몽고디비
- openCV
- Artificial Intelligence
- 주일설교
- node.js
- Big Data
- 빅 데이타
- 인공지능
- MongoDB
- R
- 빅 데이터
- data science
- Statistics
- c++
- 데이터 과학
- 통계
- 빅데이터
- Deep learning
- probability
- 김양재 목사님
- 우리들교회
- 빅데이타
- Machine Learning
- 딥러닝
- No SQL
- 김양재 목사
- WebGL
- Today
- Total
목록인공지능 (40)
Scientific Computing & Data Science
Written by Geol Choi | Nov. 01, 2017 이번 포스팅에서는 웹캠으로부터 입력받은 영상을 TensorFlow Object Detection API와 연동하여 오브젝트를 감지하는 방법에 대해 알아보겠습니다. 지난 포스팅을 읽지 않았다면, 먼저 읽을 것을 권장하며, Python-OpenCV에 대한 간단한 지식도 필요합니다. TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 1. - 개발환경 설정TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 2. - 코드 설명 및 응용Python-OpenCV 개발환경 구축TensorFlow Object Detection API GitHub Page * 주의사항: 본 포..
Written by Geol Choi | Oct. 30, 2017 지난 포스팅에서 약속드린 바와 같이, TensorFlow의 Object Detection API의 예제 코드를 분석하고 응용 예제에 대한 설명을 드리겠습니다. 아래 코드 설명을 이해하려면 지난 포스팅에 소개드린 내용대로 코드를 우선 실행해 보시기를 권장합니다. * 본 튜토리얼을 시리즈로 진행되며, 각 링크는 다음과 같습니다:TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 1. - 개발환경 설정TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 2. - 코드 설명 및 응용TensorFlow Object Detection API를 이용한 다물체 인식하기 Part..
Written by Geol Choi | Oct. 21, 2017 이번 포스팅에서는 TensorFlow™(TF)의 시각화 도구인 TensorBoard를 이용하여 Computation Graph를 시각화하는 방법에 대하여 알아보도록 하겠습니다. 실행환경은 다음과 같습니다:OS: Windows 7 64-bitAnaconda: Python 3.6 (5.0.0)TensorFlow: r1.3R: 3.4.2 short summerRStudio: 1.0.136 필자의 실행환경은 위와 같지만, Windows가 아닌 다른 OS 환경에서도 동일한 방식으로 실행할 수 있으리라 예상됩니다. 본 튜토리얼은 딥러닝(Deep Learning;DL)에 대한 기본적인 개념을 이해하고 있으며, TensorFlow의 DL 구현에 대한 기..
Written by Geol Choi | Aug. 4, 2017 부제목: 인공신경망 처절하게 제대로 이해하기 지난 포스팅에서 R에서 딥러닝을 바닥부터(from scratch) 구현하는 방법에 대해 개괄적으로 살펴본 적이 있는데, 이번 포스팅에서는 코드를 자세하게 분석하면서 수학적으로 과정을 풀어보고자 합니다.1. 데이터 준비딥러닝 코드를 작성하기 위해 테스트 용도의 데이터로 iris 데이터셋을 사용할 것입니다. iris는 일종의 꽃을 꽃받침 및 꽃잎의 폭과 길이 등으로 분류한 데이터입이며, R의 기본 패키지에 포함이 되어 있습니다. 대략적인 데이터의 형태는 다음과 같습니다: > head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 ..
Written by Geol Choi | Jul. 31, 2017 [목차]1. 필요한 패키지 로딩2. MNIST 데이터세트 임포트3. 학습 파라미터 정의4. 네트워크 파라미터 정의5. placeholder 변수 설정6. 네트워크 변수 정의 및 초기화7. 네트워크 모델 구성8. 손실함수와 옵티마이저 정의9. 변수 및 세션 초기화10. 학습11. 학습된 모델 평가12. 정확도 계산13. 결과 그래프 출력14. 전체 코드15. 맺음말 이번 포스팅에서는 MNIST 손글씨 숫자(Hand-written Digits) 데이터세트를 활용하여 TensorFlow에서 Multilayer Perceptron(MLP) 또는 Feedforward Neural Networks를 구현하는 방법에 대해 알아보도록 하겠습니다. MLP..
Written by Geol Choi | Jul. 15, 2017 이번 포스팅에서는 회선신경망(Convolutional Neural Network; CNN)을 이용하여 손글씨 숫자를 학습시키는 코드를 Pytnon과 R 각각에 대하여 TensorFlow에서 어떻게 구현할 수 있는지 알아보도록 한다. [목차] 1. Python-TensorFlow 2. R-TensorFlow 2.1. 라이브러리 패키지 불러오기 2.2. 입력 데이터 준비 2.3. 파라미터 정의 2.4. weights & biases 변수 정의 2.5. placeholder 변수 정의 2.6. conv2d 함수 정의 2.7. maxpool2d 함수 정의 2.8. conv_net 함수 정의 2.9. 모델 세우기 2.10. 손실함수 및 Optimi..
by Geol Choi | Jun. 22, 2017MXNet은 Caffe, CNTK, TensorFlow, Theano, Torch, H2O 등과 같은 딥러닝 프레임워크 중 하나이다.눈 여결 볼 것 중 하나는, AWS(Amazon Web Services)이 MXNet을 지원하게 되었는데 그 이유가 이 들 딥러닝 프레임워크 중 가장 확장 가능한(Scalable) 프레임워크라는 이유에서이다. 확장 가능하다는 것은, 계산 속도나 메모리 용량을 늘리기 위해 다중의 CPU 또는 GPU 활용하거나 컴퓨팅 머신을 자유자재로 늘릴 수 있다는 뜻이다. 또한 MXNet은 다양한 플랫폼을 지원하는데, 지원하는 플랫폼 종류에 대해서는 아래에 정리하여 살펴보도록 하겠다.딥러닝 프레임워크를 선택하는 기준?위에 언급한 딥러닝 프레..
by Geol Choi | Jun. 3, 2017 이번 포스팅에서는 지난 포스팅에 이어 역전파(Backpropagation)에 대해 간단한 예제를 통해 좀 더 쉽게, 그리고 딥러닝 예제를 통해 실질적으로 어떻게 작동하는지 자세히 알아보도록 하겠다.Simple Example아래 이미지와 같은 실수값 회로(Circuit)이 있다고 가정해 보자. 입력(Input)은 x, y, z 인데 주어진 값은 각각 3, -1, 8이다. 함수 p, q, f는 각각 다음과 같다: \(p=x+y\), \(q=p+z\), \(f=\mathrm{exp}(q)\) 따라서, 이 회로에 의한 Forward-pass 과정은 다음과 같으며,(1) \(p \leftarrow x+y\)(2) \(q \leftarrow p*z\)(3) \(f ..
by Geol Choi | Apr. 20, 2017Contents1. 소개 2. R의 딥러닝 패키지들 3. "MXNetR" 패키지 4. "darch" 패키지 5. "deepnet" 패키지 6. "H2O" 패키지 7. "deepr" 패키지 8. 패키지 비교 9. 결론 10. 참고 1. 소개딥러닝은 데이터를 고도의 비선형 모델링을 할 수 있는 머신러닝의 최신 트렌드이다. 지난 몇년간 딥러닝은 다양한 응용분야에서 막대한 모멘텀과 우세함을 얻게 되었다. 이러한 응용분야는 이미지와 음성 인식, 자율주행차, 자연어 처리 등 다양하다. 흥미롭게도 딥러닝의 대다수의 수학 컨셉은 수십년간에 걸쳐 알려져 왔다. 그러나, 이들은 딥러닝의 잠재력을 촉발시킨 최근의 발전에 의한 것이었다 (Nair and Hinton 2010;..
by Geol Choi | April 11, 2017 지난 포스팅에 이어 R-TensorFlow 세번째 예제로 Linear Regression을 구현하는 방법에 대하여 알아보기로 한다. TensorFlow 라이브러리 로딩하기지난 포스팅의 예제들과 마찬가지로 가장 먼저 할 일은, TensorFlow 라이브러리를 로딩하는 것이다. 이 외에도 Linear Regression을 시각화 하기 위해 plotly 라이브러리도 로딩하도록 한다: R CODE:# import library if (! ("plotly" %in% rownames(installed.packages()))) { install.packages("plotly") } library(plotly) if (! ("tensorflow" %in% rowna..