일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 몽고디비
- 김양재
- Statistics
- 데이터 과학
- R
- openCV
- Big Data
- c++
- 주일설교
- node.js
- MongoDB
- nodeJS
- 빅 데이타
- Machine Learning
- WebGL
- 빅데이타
- No SQL
- probability
- 우리들교회
- 김양재 목사
- 인공지능
- 통계
- 확률
- 김양재 목사님
- 빅데이터
- data science
- 빅 데이터
- Artificial Intelligence
- 딥러닝
- Deep learning
- Today
- Total
목록확률 (42)
Scientific Computing & Data Science
\(A_1, ..., A_n\)이 샘플 공간의 분할이면, 사건 \(B\)의 조건 하에 사건 \(A_i\)의 Posterior Probability는 확률 \(P(A_i)\)와 \(P(B \mid A_i)\)를 이용하여 다음과 같이 구할 수 있다. \(\displaystyle{ P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{\sum_{j=1}^{n}{P(A_j)P(B \mid A_j)}} }\) 이를 Bayes' Theorem이라고 한다. Bayes' Theorem은 확률이론에 있어 매우 중요한 결론이다. 이는 새로운 정보가 기존의 확률 정보의 업데이트 또는 개정에 어떻게 유용하게 사용될 수 있는가에 대한 방법을 제시해 주기 때문이다. 어떤 경우에 있어 Prior Probab..
A1, ..., An을 샘플 공간 S의 분할이라고 하고 각 Ai를 상호 배타적이라고 하면, \(S = A_1 \cup ... \cup A_n\) 라고 할 수 있다. n개의 이벤트에 대한 확률 P(A1), ... ,P(An)이 알려져 있으며 또한 조건부 확률 \(P(B|A_i)\) 도 알려져 있다고 하자. P(B)를 계산하기 위해 P(Ai)와 P(B|Ai)를 이용한다. 사건 \(A_i \cap B\)가 상호 배타적이라면 다음이 성립된다: \(P(B) = \displaystyle{\sum_{j=1}^{n}{P(A_j)P(B|A_j)}}\) 이 결과를 "전체 확률의 법칙(Law of Total Probability)"라고 한다. 다시 한 번 정리하면: 만약 \(A_1\), ..., \(A_n\)을 샘플 공간의..