일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 통계
- 우리들교회
- 확률
- 빅 데이타
- node.js
- 주일설교
- probability
- c++
- Artificial Intelligence
- 김양재 목사
- 딥러닝
- nodeJS
- Big Data
- Statistics
- data science
- 김양재 목사님
- Machine Learning
- 데이터 과학
- MongoDB
- 빅 데이터
- R
- 김양재
- 빅데이터
- Deep learning
- No SQL
- 몽고디비
- 빅데이타
- openCV
- WebGL
- 인공지능
- Today
- Total
목록분류 전체보기 (869)
Scientific Computing & Data Science
[Lec 00]수업의 개요와 일정[Lec 01]기본적인 Machine Learning의 용어와 개념 설명[Lab 01]TensorFlow의 설치 및 기본적인 Operations[Lec 02]Linear Regression의 Hypothesis와 Cost[Lab 02]TensorFlow로 간단한 Linear Regression 구현[Lec 03]Linear Regression의 Cost 최소화 알고리즘[Lab 03]Linear Regression의 Cost 최소화의 TensorFlow 구현[Lec 04]Multi-variable Linear Regression[Lab 04]Multi-variable Linear Regression을 TensorFlow에서 구현하기[Lec 5-1]Logistic Classi..
TensorFlow는 공식적으로 Mac과 Linux 환경에서 설치를 지원하며, 아직 공식적으로 Windows에 대한 지원을 하지 않는다.그러나, 최근 가상 컨테이너 기술인 Docker를 이용하여 Windows 환경에서 TensorFlow를 설치할 수 있게 되었는데 이에 대한 방법을 알아보도록 하겠다.1 단계 - Docker Toolbox 설치Windows에 Docker Machine을 설치하려면,(1) Windows 32/64 bit(2) Windows 7+(3) CPU 가상화가 가능 CPU 가상화가 가능하지는 MS에서 제공하는 가상화 감지 도구(Hardware-Assisted Virtualization Detection Tool)를 다운받고 실행해 본다.실행하였을 때 아래 이미지와 같이 "This co..
이 글은 본래 Capital of Statistic에 중국어로 간행된 것이며 많은 훌륭한 조언을 해준 He Tong에게 감사를 전한다.이 글에 수록된 모든 코드는 GitHub[링크]에 있다.데이터 과학자들은 R, SAS, SPSS, MATLAB 등과 같은 통계 소프트웨어에 이미 익숙해있다; 그러나, 일들 중 일부는 병렬 컴퓨팅에 상대적으로 미숙하다. 그래서 이 글에서 R에서 병렬 컴퓨팅 사용에 대한 기본개념을 소개하고자 한다. 병렬 컴퓨팅이란 무엇인가?병렬 컴퓨팅은 분명히 고성능 컴퓨터와 병렬 소프트웨어를 포함해야 한다. 고성능 컴퓨터의 피크(Peak) 성능은 급증하고 있다. 최근의 세계 500대 수퍼컴퓨터 랭킹에서 중국의 Sunway TaihuLight은 93 PFLOPS로 최고에 올라있다(링크). 대..
이번 글에서는 R에서 병렬처리를 하는 방법에 대하여 소개하도록 한다.R-bloggers의 글, How-to go parallel in R - basics + tips의 내용을 최대한 참고하여 정리해 보았다. [목차]1. lapply에 대하여2. parallel 패키지3. foreach 패키지4. 디버깅5. 캐싱(Caching)6. 계산 부하 밸런싱7. 이미지 프로세싱 예제 1. lapply에 대하여R이 기본적으로 제공하는 함수들 중 가장 많이 사용되는 함수가 lapply일 것이다.이와 유사한 함수로 apply, sapply, tapply 등이 있는데 각자의 쓰임새가 있으며, 자신이 R유저라고 자신한다면 이 함수들이 어느 상황에 적절히 쓰이는지 이해하고 자유자재로 다룰 수 있어야 한다고 생각한다. 다음 코..
이 글에 소개되는 기술들은 대부분의 데이터 과학자 및 관련 업계 종사자들이 매일의 업무에 사용하는 기술로써 벤더가 제공하거나 직접 설계해서 쓰는 툴들이다. 아래 40개 중 어느 링크를 클릭하면 논의가 되고 있는 관련 글을 자세하게 읽을 수 있다. 이들 대부분의 글들은 구글 검색으로는 찾기 어렵기 때문에 데이터 과학, 머신러닝, 통계 과학에 대한 숨은 문헌에 접근하는 것이 된다. 이들 중 대다수는 논의가 되고 있는 기술에 대한 근본적인 이해를 돕고자 하는 것이며, 심도있는 참고문헌 및 소스코드를 제공한다.별표(*)가 되어있는 기술들은 소위 딥 데이터 과학(Deep Data Science)에 속하며, 이는 머신러닝, 컴퓨터 과학, 오퍼레이션 연구, 수학, 통계학 등의 분야와 조금이라도 겹치는 데이터 과학의 ..
데이터 과학이 R, Python, Hadoop, SQL 및 전통적 머신러닝 또는 통계 모델링에 대한 것이라고 믿는 사람들이 많다. 아래의 글들은 데이터 과학이 얼마나 현대적이며, 넓고 깊은 분야인지를 기본적으로 보여준다. 어떤 데이터 과학자들은 실제로 위에 나열된 것들 중 아무 것도 하지 않는다. 어떠한 코딩도 하지 않고, 대신, 머신 간 통신 프레임워크에서 다양한 어플리케이션들이 서로 대화하도록 하는 일을 데이터 과학자도 있다. 그러나 대부분의 데이터 과학자들이 R, Python, Hadoop 관련 시스템을 사용하는 것은 사실이다.심층 데이터 과학에 대한 글(아래 참고)을 읽어보면 데이터 과학 또한 많은 사람들(자신을 데이터 과학자라고 부르는 사람들)이 반복적으로 하는 일을 자동화하는 것을 알 수 있다..
* 이 글은 Data Science Central의 "Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics"을 번역한 것이다. 이번 글에서는 데이터 과학자의 다양한 역할과 머신러닝, 딥 러닝, AI, 통계학, IoT, 오퍼레이션 리서치, 응용 수학 등과 같은 관련 분야와 데이터 과학이 어떻게 다른지 공통점은 무엇인지 기술하고자 한다.데이터 과학은 넓은 분야를 포괄하는 만큼, 어떤 사업 분야에서도 마주칠 수 있는 데이터 과학자의 다양한 유형에 대해 살펴보기록 한다: 각자는 자신이 미처 몰랐던 스스로가 데이터 과학자임을 깨닫게 될 수도 있다.다른 과학 분야의 소양과 마찬가지로, 데이터 과학자들은 관련 소양으로부..
이번 글에서는 Support Vector Machine(이하 SVM)의 개념과 간단한 이론에 대해 이해하고자 한다. 1. SVM의 개념SVM의 개념은 매우 간단한데, 특징에 따라 서로 유사한 그룹끼리 칸막이를 쳐서 나누는 것이다.이 칸막이를 초평면(Hyperplane)이라고 부른다.SVM의 기초가 되는 수학적 이론은 수십년에 걸쳐 정리가 되었지만, 최근이 되어서야 주목을 받게 되었는데, 그 이유는 첫번째로 성능이 월등히 개선되었고, 이에 따라 여러 프로그래밍 언어를 지원하는 잘 정돈된 라이브러리가 등장했기 때문이다.SVM은 분류 및 수치 예측 등 거의 모든 학습 문제에 잘 대처할 수 있는데 특히 알고리즘의 성공적인 열쇠가 되는 것은 패턴 인식이다.주목할 만한 응용분야는 다음과 같다:바이오인포매틱스 분야에..
RealFlow 10의 Dyverso Solver를 이용하여 Text를 구성하는 Particle이 바람에 휘~~익 사라지는 효과를 테스트 해 보았다. 1. Text Mesh 생성 및 익스포트Text Mesh는 CINEMA 4D의 MoText를 이용하여 생성하였다. 생성한 Text Mesh를 RealFlow SD Exporter를 이용하여 Export 하였다. 2. RealFlow Scence 구성익스포트한 SD 오브젝트(Text Mesh)를 RealFlow에서 Import하여 Scene을 구성하였다. (1) DYVERSO Domain 생성 (2) DYVERSO Emitter 생성 - Type: Fill - Object: GCHOI (3) Daemons > Noise Field 생성 (6) Daemons ..