일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 빅 데이타
- No SQL
- 몽고디비
- 딥러닝
- probability
- Statistics
- 주일설교
- WebGL
- 우리들교회
- 빅데이터
- 인공지능
- 김양재 목사
- 김양재
- 확률
- nodeJS
- data science
- Big Data
- 빅 데이터
- 데이터 과학
- R
- Deep learning
- node.js
- Artificial Intelligence
- Machine Learning
- 김양재 목사님
- 빅데이타
- openCV
- 통계
- MongoDB
- c++
- Today
- Total
목록reinforcement learning (2)
Scientific Computing & Data Science
이번 포스팅에서는 머신러닝의 분류에 대하여 정리해 보기로 한다.머신러닝의 목적은 인간이 개입하지 않고 컴퓨터가 어떠한 일을 수행할 수 있도록 학습시키는 것이다. 유전학, 사회관계망, 광고, 위험분석 등과 같은 응용분야의 증가에 따라 프로세스, 고객, 조직에 필요한 정보 추출하 또는 인사이트 제공을 위한 엄청난 양의 데이터를 분석할 수 있는 데이터가 생성되고 있다. 궁극적으로 머신러은 모델을 세우고 평가를 위해 과거, 현재 미래의 데이터를 이용하여 성능 조건을 최적화하는 알고리즘으로 구성된다. 1. Unsupervised Learning (비지도 학습)비지도 학습의 목표는 어떠한 관찰 데이터 집합에 대한 일정한 규칙성과 불규칙성을 발견해 내는 것이다. 통계학에서 Density Estimation으로 알려진..
본 포스팅에서는 머신러닝과 관련 핵심용어에 대한 설명을 하도록 한다.1. 머신러닝 (Machine Learning; ML)Mitchell에 따르면, ML은 "경험에 의해 자동으로 개선되는 컴퓨터 프로그램을 어떻게 구현할 것인가"와 관련이 깊다. ML은 자연적으로 여러 분야에 걸쳐있으며, 컴퓨터 과학, 통계, 인공지능 및 기타 분야의 다양한 기술을 도입한다. ML 연구의 주요 성과물은 경험으로부터 자동 개선을 가능하게 하는 알고리즘, 컴퓨터 비전, 인공지능, 데이터 마이닝(Data Mining)과 같은 분야 적용할 수 있는 알고리즘 등이다.2. 분류 (Classification)분류는 데이터를 정해진 카테고리에 지정하는 모델을 구축하는 것과 관련이 깊다. 이 모델들은 알고리즘이 학습할 수 있도록 미리 라벨..