일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- openCV
- R
- 확률
- 통계
- 빅 데이터
- 인공지능
- 김양재 목사
- Big Data
- Artificial Intelligence
- Machine Learning
- 김양재
- MongoDB
- probability
- 딥러닝
- 몽고디비
- 김양재 목사님
- No SQL
- 빅데이터
- Statistics
- node.js
- 데이터 과학
- nodeJS
- c++
- data science
- 빅 데이타
- 우리들교회
- Deep learning
- WebGL
- 빅데이타
- 주일설교
- Today
- Total
목록major league (3)
Scientific Computing & Data Science
앞선 포스팅(온라인 야구 데이터를 MongoDB에 저장하기)에서 Retrosheet의 Game Log 데이터를 불러오고 이를 MongoDB에 저장하는 방법에 대하여 알아보았다.이번 포스팅에서는 저장된 Game Log 데이터로부터 메이저리그의 역대 관중수가 어떻게 변화되어 왔는지 알아보기로 한다. 1. MongoDB 서버 실행이 포스팅은 Retrosheet의 Game Log 데이터가 MongoDB에 저장되어 있음을 가정하므로, 저장된 데이터를 가져오려면 MongoDB 서버가 실행되고 있다는 것 또한 가정한다.만약 MongoDB 서버 실행 방법을 모른다면 이 링크를 참고하기 바란다. 2. 관중수 계산하기Plotting을 위한 라이브러리 및 DB 관련 소스 로드하기년도와 각 연도별 관중수를 Plotting하기..
Lahman 데이터를 이용한 야구 데이터 분석 Part 3.QUESTIONSQ1. American League의 지명타자 제도 도입으로 양 리그(National League와 American League) 간 득점의 차이가 생겼을까?Q2. MLB 전체 히스토리에서 투수의 완투비율은 어떻게 변화되어 왔는가? 지난 포스팅에 이어 질문을 하고 이에 대해 답하는 형식으로 야구 데이터 분석을 진행해 보기로 한다. Q1. American League의 지명타자 제도 도입으로 양 리그(National League와 American League) 간 득점의 차이가 생겼을까?이 질문에 대답을 하기 위해 American League에 지명타자 제도가 처음으로 도입된 해인 1973년도 이전과 이후의 양 리그 간 득점의 추이..
Lahman 데이터를 이용한 야구 데이터 분석 Part 1. - 데이터 준비CONTENTS1. MLB 데이터 준비2. R의 Working Directory 구조3. MongoDB에 데이터 삽입 (Optional)4. MongoDB로부터 데이터 불러오기5. 맺음말 본 포스팅에서는 Database Journalist인 Sean Lahman의 최신 데이터를 이용하여 MLB에 대한 분석을 시도해 보고자 한다. 처음에는 KBO 데이터를 분석해보고자 하였지만, 데이터를 얻기가 불편하고 초기 준비 단계가 많아 데이터 획득이 훨씬 수월하고 방대한 데이터를 보유하고 참고자료가 풍성한 MLB부터 시도해 보기로 하였다. 차후에는 KBO 데이터를 획득부터 분석까지 시도해 보기록 하겠다. 분석 환경은 가장 인기있는 통계처리 언..