일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 빅데이터
- 김양재
- 주일설교
- R
- 김양재 목사
- node.js
- Statistics
- probability
- nodeJS
- 통계
- 빅데이타
- Artificial Intelligence
- WebGL
- Big Data
- 김양재 목사님
- openCV
- 빅 데이타
- No SQL
- 몽고디비
- Machine Learning
- 우리들교회
- Deep learning
- 인공지능
- 데이터 과학
- 딥러닝
- 빅 데이터
- data science
- c++
- 확률
- MongoDB
- Today
- Total
목록Support Vector Machine (2)
Scientific Computing & Data Science
본 포스팅에서는 머신러닝과 관련 핵심용어에 대한 설명을 하도록 한다.1. 머신러닝 (Machine Learning; ML)Mitchell에 따르면, ML은 "경험에 의해 자동으로 개선되는 컴퓨터 프로그램을 어떻게 구현할 것인가"와 관련이 깊다. ML은 자연적으로 여러 분야에 걸쳐있으며, 컴퓨터 과학, 통계, 인공지능 및 기타 분야의 다양한 기술을 도입한다. ML 연구의 주요 성과물은 경험으로부터 자동 개선을 가능하게 하는 알고리즘, 컴퓨터 비전, 인공지능, 데이터 마이닝(Data Mining)과 같은 분야 적용할 수 있는 알고리즘 등이다.2. 분류 (Classification)분류는 데이터를 정해진 카테고리에 지정하는 모델을 구축하는 것과 관련이 깊다. 이 모델들은 알고리즘이 학습할 수 있도록 미리 라벨..
이번 글에서는 Support Vector Machine(이하 SVM)의 개념과 간단한 이론에 대해 이해하고자 한다. 1. SVM의 개념SVM의 개념은 매우 간단한데, 특징에 따라 서로 유사한 그룹끼리 칸막이를 쳐서 나누는 것이다.이 칸막이를 초평면(Hyperplane)이라고 부른다.SVM의 기초가 되는 수학적 이론은 수십년에 걸쳐 정리가 되었지만, 최근이 되어서야 주목을 받게 되었는데, 그 이유는 첫번째로 성능이 월등히 개선되었고, 이에 따라 여러 프로그래밍 언어를 지원하는 잘 정돈된 라이브러리가 등장했기 때문이다.SVM은 분류 및 수치 예측 등 거의 모든 학습 문제에 잘 대처할 수 있는데 특히 알고리즘의 성공적인 열쇠가 되는 것은 패턴 인식이다.주목할 만한 응용분야는 다음과 같다:바이오인포매틱스 분야에..