일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 통계
- 빅데이터
- openCV
- Big Data
- node.js
- 빅데이타
- No SQL
- MongoDB
- 몽고디비
- Statistics
- WebGL
- 주일설교
- 딥러닝
- Artificial Intelligence
- R
- 빅 데이타
- data science
- probability
- 우리들교회
- 김양재
- 김양재 목사님
- 확률
- c++
- 인공지능
- 데이터 과학
- nodeJS
- 빅 데이터
- Deep learning
- Machine Learning
- 김양재 목사
Archives
- Today
- Total
목록Kepler (1)
Scientific Computing & Data Science
[GPU 기술] GPU 기술동향
by Geol Choi | Mar. 30, 2014목 차 1. GPU 개괄1.1. 병렬 컴퓨터로서의 GPU1.2. 현대 GPU의 구조1.3. 고수준의 병렬 계산을 하는 이유?1.4. 병렬 프로그래밍 언어와 모델2. GPU 역사2.1. 그래픽스 파이프라인의 진화2.2. GPU 계산2.3. 미래 발전 동향3. 최신 기술 동향3.1. 다양한 분야에서의 병렬 계산3.2. 하이브리드 GPU 기술3.3. 통합 셰이더 기술3.4. NVIDIA의 Fermi 아키텍쳐3.5. NVIDIA의 Kepler 아키텍쳐3.6. NVIDIA의 Tesla 프로세서4. 컴퓨터 그래픽스 산업 분야에서의 GPU 활용4.1. PhysX4.2. OptiX4.3. SceniX4.4. CompleX5. 맺음말 1. GPU 개괄Intel Penti..
Scientific Computing/NVIDIA CUDA
2014. 3. 30. 14:38