일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- probability
- R
- c++
- 김양재
- data science
- 우리들교회
- 확률
- 빅 데이터
- nodeJS
- Machine Learning
- Artificial Intelligence
- 딥러닝
- node.js
- 몽고디비
- Deep learning
- No SQL
- Statistics
- WebGL
- MongoDB
- openCV
- Big Data
- 김양재 목사님
- 인공지능
- 김양재 목사
- 빅 데이타
- 통계
- 주일설교
- 데이터 과학
- 빅데이타
- 빅데이터
- Today
- Total
Scientific Computing & Data Science
[Artificial Intelligence / TensorFlow] R-TensorFlow 예제 - Linear Regression 본문
[Artificial Intelligence / TensorFlow] R-TensorFlow 예제 - Linear Regression
cinema4dr12 2017. 4. 11. 23:11by Geol Choi |
지난 포스팅에 이어 R-TensorFlow 세번째 예제로 Linear Regression을 구현하는 방법에 대하여 알아보기로 한다.
TensorFlow 라이브러리 로딩하기
지난 포스팅의 예제들과 마찬가지로 가장 먼저 할 일은, TensorFlow 라이브러리를 로딩하는 것이다. 이 외에도 Linear Regression을 시각화 하기 위해 plotly 라이브러리도 로딩하도록 한다:
R CODE:
# import library if (! ("plotly" %in% rownames(installed.packages()))) { install.packages("plotly") } library(plotly) if (! ("tensorflow" %in% rownames(installed.packages()))) { install.packages("tensorflow") } base::library(tensorflow)
파라미터 설정
학습률(Learning Rate; 최적화 문제에서는 Step Size라고도 함), Epochs(학습을 위한 반복계산 회수), Display Step(몇 번의 Epoch 주기마다 결과를 디스플레이를 할 지 결정하는 파라미터임)를 설정한다:
R CODE:
# Parameters learning_rate <- 0.01 training_epochs <- 1000 display_step <- 50
학습 데이터 정의
Linear Regression에 대한 학습을 위한 데이터를 공급한다:
R CODE:
# Training Data train_X <- base::c(3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1) train_Y <- base::c(1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3) n_samples <- base::length(train_X)
n_samples는 학습 데이터의 개수를 의미한다.
placeholder와 변수 정의
학습 연산 시 공급할 데이터에 대한 컨테이너(Container) 역할을 하는 placeholder와 변수를 정의한다:
R CODE:
# tf Graph Input X <- tensorflow::tf$placeholder(tf$float32) Y <- tensorflow::tf$placeholder(tf$float32) # Set model weights W <- tensorflow::tf$Variable(stats::runif(n = 1, min = -2, max = 2), name="weight") b <- tensorflow::tf$Variable(stats::runif(n = 1, min = -2, max = 2), name="bias")
placeholder X와 Y의 데이터 타입은 float32(32-bit Single Precision Floating Point)로 지정하였으며, W와 b는 -2와 +2 사이의 Uniform Distribution에 의한 난수(Random Number) 1개를 발생시켰다.
Linear Model 정의
Linear Regression을 위한 모델, \( W^{T}x +b \)을 정의하는데, 목표는 W(Weight)와 b(Bias)를 결정하는 것이고 이를 위해 학습 데이터 X와 Y를 공급한다:
R CODE:
# Construct a linear model pred <- tensorflow::tf$add(tensorflow::tf$multiply(X, W), b)
Cost Function 정의
Linear Regression 문제를 해결하기 위한 Cost Function(목적 함수; Objective Function)을 MSE(Mean-Square Error)로 하였다. 즉, 본 문제는 다음과 같은 최적화 문제를 해결하는 것과 같다:
\(\mathrm{min} \ f = \sum_{i=1}^{N}{\frac{(\bar{y}_i-y_i)^2}{2N}}\)
위의 식의 MSE에서 2로 나눈 이유는 제곱에 대한 미분을 할 때 계수(Coefficient)를 제거하기 위함이며 이로 인한 W와 b의 결과값에 대한 차이는 없다.
Cost Function을 정의하는 코드는 다음과 같다:
R CODE:
# Mean squared error cost <- tensorflow::tf$reduce_sum(tensorflow::tf$pow(pred-Y, 2)) / (2*n_samples)
Optimizer 정의
Optimizer는 Newton 방법인 급강하법(Steepest Gradient Descent Method)을 사용하며, 매 Epoch에 대하여 다음과 같은 식으로 업데이트 된다:
\(W \leftarrow W - \alpha \nabla W \)
Optimizer를 정의하는 코드는 다음과 같다:
R CODE:
# Gradient descent optimizer <- tensorflow::tf$train$GradientDescentOptimizer(learning_rate)$minimize(cost)
TensorFlow Session 정의 및 변수 초기화
다음과 같이 TensorFlow Session을 정의하며, 이 세션은 sess에 저장한다. 그리고나서 변수들을 초기화 한다:
R CODE:
# Launch the default graph. sess <- tensorflow::tf$Session() # Initializing the variables sess$run(tf$global_variables_initializer())
데이터 학습 및 디스플레이 로그(Log) 저장
이제 데이터를 학습 시키도록 하는데, 매 Epoch 마다 train_X로부터 각 엘리먼트 별로 Optimizer를 실행한다:
R CODE:
# Fit all training data for(epoch in 1:training_epochs) { for(index in 1:base::length(train_X)) { x <- train_X[index]; y <- train_Y[index]; sess$run(optimizer, feed_dict = dict(X = x, Y = y)) } }
Epoch가 반복됨에 따라 Optimize가 되어 가는 과정을 디스플레이하기 위해 해당 결과값을 기록한다:
R CODE:
# Display logs per epoch step if((epoch+1) %% display_step == 0) { sess$run(cost, feed_dict = dict(X = train_X, Y = train_Y)) res <- base::sprintf("Epoch: %04d , cost = %.9f , W = %f, b = %f", (epoch+1), sess$run(W), sess$run(W), sess$run(b)) base::print(res) }
위의 코드가 실행되면 다음과 유사한 결과가 출력될 것이다:
[1] "Epoch: 0050 , cost = 0.270439088 , W = 0.270439, b = 0.651506"
[1] "Epoch: 0100 , cost = 0.269199342 , W = 0.269199, b = 0.660424"
[1] "Epoch: 0150 , cost = 0.268033355 , W = 0.268033, b = 0.668812"
[1] "Epoch: 0200 , cost = 0.266936749 , W = 0.266937, b = 0.676701"
[1] "Epoch: 0250 , cost = 0.265905321 , W = 0.265905, b = 0.684121"
[1] "Epoch: 0300 , cost = 0.264935255 , W = 0.264935, b = 0.691100"
[1] "Epoch: 0350 , cost = 0.264022708 , W = 0.264023, b = 0.697664"
[1] "Epoch: 0400 , cost = 0.263164729 , W = 0.263165, b = 0.703837"
[1] "Epoch: 0450 , cost = 0.262357503 , W = 0.262358, b = 0.709644"
[1] "Epoch: 0500 , cost = 0.261598349 , W = 0.261598, b = 0.715105"
[1] "Epoch: 0550 , cost = 0.260884255 , W = 0.260884, b = 0.720242"
[1] "Epoch: 0600 , cost = 0.260212690 , W = 0.260213, b = 0.725073"
[1] "Epoch: 0650 , cost = 0.259581059 , W = 0.259581, b = 0.729617"
[1] "Epoch: 0700 , cost = 0.258986861 , W = 0.258987, b = 0.733892"
[1] "Epoch: 0750 , cost = 0.258428127 , W = 0.258428, b = 0.737911"
[1] "Epoch: 0800 , cost = 0.257902652 , W = 0.257903, b = 0.741692"
[1] "Epoch: 0850 , cost = 0.257408261 , W = 0.257408, b = 0.745248"
[1] "Epoch: 0900 , cost = 0.256943405 , W = 0.256943, b = 0.748592"
[1] "Epoch: 0950 , cost = 0.256506115 , W = 0.256506, b = 0.751739"
[1] "Epoch: 1000 , cost = 0.256094903 , W = 0.256095, b = 0.754697"
학습 결과값 및 그래프 출력
학습된 최종 결과를 확인하도록 한다. 최종 결과에는 학습 결과에 대한 Cost Function 값, W, b의 값이다:
R CODE:
base::print("Optimization Finished!") training_cost <- sess$run(cost, feed_dict = dict(X = train_X, Y = train_Y)) base::print(base::sprintf("Training cost = %f, W = %f, b = %f", training_cost, sess$run(W), sess$run(b)))
필자의 컴퓨터로 실행한 결과는 다음과 같았다:
[1] "Training cost = 0.077116, W = 0.256087, b = 0.754754"
그러나, 숫자로 표기되니 결과(Fitted Line)이 원래의 데이터와 얼마나 잘 맞는지 알기가 어려우므로 plotly 패키지 라이브러리를 이용하여 이를 시각화해 본다:
R CODE:
# Graphic display for train data df1 <- base::data.frame(base::matrix(ncol = 3, nrow = base::length(train_X))) base::names(df1) <- base::c("train_X", "train_Y", "fitted") df1$train_X <- train_X df1$train_Y <- train_Y df1$fitted <- sess$run(W) * train_X + sess$run(b) p <- plotly::plot_ly() p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~train_Y, type="scatter", mode = "markers",name = "Train Data") p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~fitted, type="scatter", mode = "lines", name = "Fitted Line") p <- p %>% plotly::layout(title = 'Linear Regression for Train Data', yaxis = base::list(title = "Y", zeroline = FALSE), xaxis = base::list(title = "X", zeroline = FALSE)) base::print(p) # print results
테스트 데이터를 통한 평가
이제 테스트 데이터를 공급하고 이들을 통해 손실(Loss)과 MSE를 계산한다:
R CODE:
# Testing example, as requested test_X <- base::c(6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1) test_Y <- base::c(1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03) base::print("Testing... (Mean square loss Comparison)") testing_cost <- sess$run(tf$reduce_sum(tf$pow(pred - Y, 2)) / (2 * base::length(test_X)), feed_dict = dict(X = test_X, Y = test_Y)) # same function as cost above base::print(base::sprintf("Testing cost = %f", testing_cost)) base::print(base::sprintf("Absolute mean square loss difference: %f", base::abs(training_cost - testing_cost)))
위의 코드 실행결과는 다음과 같았다:
[1] "Epoch: 0050 , cost = 0.381595880 , W = 0.381596, b = -0.148148"
[1] "Epoch: 0100 , cost = 0.373745024 , W = 0.373745, b = -0.091670"
[1] "Epoch: 0150 , cost = 0.366361171 , W = 0.366361, b = -0.038551"
[1] "Epoch: 0200 , cost = 0.359416485 , W = 0.359416, b = 0.011409"
[1] "Epoch: 0250 , cost = 0.352884799 , W = 0.352885, b = 0.058397"
[1] "Epoch: 0300 , cost = 0.346741557 , W = 0.346742, b = 0.102591"
[1] "Epoch: 0350 , cost = 0.340963721 , W = 0.340964, b = 0.144157"
[1] "Epoch: 0400 , cost = 0.335529476 , W = 0.335529, b = 0.183250"
[1] "Epoch: 0450 , cost = 0.330418438 , W = 0.330418, b = 0.220018"
[1] "Epoch: 0500 , cost = 0.325611353 , W = 0.325611, b = 0.254600"
[1] "Epoch: 0550 , cost = 0.321090162 , W = 0.321090, b = 0.287125"
[1] "Epoch: 0600 , cost = 0.316837847 , W = 0.316838, b = 0.317716"
[1] "Epoch: 0650 , cost = 0.312838763 , W = 0.312839, b = 0.346486"
[1] "Epoch: 0700 , cost = 0.309077144 , W = 0.309077, b = 0.373546"
[1] "Epoch: 0750 , cost = 0.305539340 , W = 0.305539, b = 0.398997"
[1] "Epoch: 0800 , cost = 0.302212059 , W = 0.302212, b = 0.422933"
[1] "Epoch: 0850 , cost = 0.299082607 , W = 0.299083, b = 0.445446"
[1] "Epoch: 0900 , cost = 0.296139181 , W = 0.296139, b = 0.466621"
[1] "Epoch: 0950 , cost = 0.293370932 , W = 0.293371, b = 0.486536"
[1] "Epoch: 1000 , cost = 0.290767282 , W = 0.290767, b = 0.505266"
[1] "Optimization Finished!"
[1] "Training cost = 0.082352, W = 0.290717, b = 0.505629"
[1] "Testing... (Mean square loss Comparison)"
[1] "Testing cost = 0.076923"
[1] "Absolute mean square loss difference: 0.005429"
마지막으로 테스트 데이터에 대한 결과를 그래프로 출력해 보도록 한다:
R CODE:
# Graphic display for test data df2 <- base::data.frame(base::matrix(ncol = 2, nrow = base::length(test_X))) base::names(df2) <- base::c("test_X", "test_Y") df2$test_X <- test_X df2$test_Y <- test_Y p <- plotly::plot_ly() p <- p %>% plotly::add_trace(data = df2, x = ~test_X, y = ~test_Y, type="scatter", mode = "markers",name = "Test Data") p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~fitted, type="scatter", mode = "lines", name = "Fitted Line") p <- p %>% plotly::layout(title = 'Linear Regression for Test Data', yaxis = base::list(title = "Y", zeroline = FALSE), xaxis = base::list(title = "X", zeroline = FALSE)) base::print(p) # print results
전체 소스 코드
전체 소스 코드를 수록하고 본 포스팅을 마치고자 한다.
linear_regression.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | ############################################################################# # linear regression example using TensorFlow library. # Author: Aymeric Damien # Translated to R: Geol Choi, phD.(cinema4dr12@gmail.com) # Date: April 10, 2017 ############################################################################# base::rm(list = ls()) base::gc() # import libraries if (! ("plotly" %in% rownames(installed.packages()))) { utils::install.packages("plotly") } library(plotly) if (! ("tensorflow" %in% rownames(installed.packages()))) { utils::install.packages("tensorflow") } base::library(tensorflow) # Parameters learning_rate <- 0.01 training_epochs <- 1000 display_step <- 50 # Training Data train_X <- base::c(3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1) train_Y <- base::c(1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3) n_samples <- base::length(train_X) # tf Graph Input X <- tensorflow::tf$placeholder(tf$float32) Y <- tensorflow::tf$placeholder(tf$float32) # Set model weights W <- tensorflow::tf$Variable(stats::runif(n = 1, min = -2, max = 2), name="weight") b <- tensorflow::tf$Variable(stats::runif(n = 1, min = -2, max = 2), name="bias") # Construct a linear model pred <- tensorflow::tf$add(tensorflow::tf$multiply(X, W), b) # Mean squared error cost <- tensorflow::tf$reduce_sum(tensorflow::tf$pow(pred-Y, 2)) / (2*n_samples) # Gradient descent optimizer <- tensorflow::tf$train$GradientDescentOptimizer(learning_rate)$minimize(cost) # Launch the default graph. sess <- tensorflow::tf$Session() # Initializing the variables sess$run(tf$global_variables_initializer()) # Fit all training data for(epoch in 1:training_epochs) { for(index in 1:base::length(train_X)) { x <- train_X[index]; y <- train_Y[index]; sess$run(optimizer, feed_dict = dict(X = x, Y = y)) } # Display logs per epoch step if((epoch+1) %% display_step == 0) { sess$run(cost, feed_dict = dict(X = train_X, Y = train_Y)) res <- base::sprintf("Epoch: %04d , cost = %.9f , W = %f, b = %f", (epoch+1), sess$run(W), sess$run(W), sess$run(b)) base::print(res) } } base::print("Optimization Finished!") training_cost <- sess$run(cost, feed_dict = dict(X = train_X, Y = train_Y)) base::print(base::sprintf("Training cost = %f, W = %f, b = %f", training_cost, sess$run(W), sess$run(b))) # Graphic display for train data df1 <- base::data.frame(base::matrix(ncol = 3, nrow = base::length(train_X))) base::names(df1) <- base::c("train_X", "train_Y", "fitted") df1$train_X <- train_X df1$train_Y <- train_Y df1$fitted <- sess$run(W) * train_X + sess$run(b) p <- plotly::plot_ly() p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~train_Y, type="scatter", mode = "markers",name = "Train Data") p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~fitted, type="scatter", mode = "lines", name = "Fitted Line") p <- p %>% plotly::layout(title = 'Linear Regression for Train Data', yaxis = base::list(title = "Y", zeroline = FALSE), xaxis = base::list(title = "X", zeroline = FALSE)) base::print(p) # print results # Testing example, as requested test_X <- base::c(6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1) test_Y <- base::c(1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03) base::print("Testing... (Mean square loss Comparison)") testing_cost <- sess$run(tf$reduce_sum(tf$pow(pred - Y, 2)) / (2 * base::length(test_X)), feed_dict = dict(X = test_X, Y = test_Y)) # same function as cost above base::print(base::sprintf("Testing cost = %f", testing_cost)) base::print(base::sprintf("Absolute mean square loss difference: %f", base::abs(training_cost - testing_cost))) # Graphic display for test data df2 <- base::data.frame(base::matrix(ncol = 2, nrow = base::length(test_X))) base::names(df2) <- base::c("test_X", "test_Y") df2$test_X <- test_X df2$test_Y <- test_Y p <- plotly::plot_ly() p <- p %>% plotly::add_trace(data = df2, x = ~test_X, y = ~test_Y, type="scatter", mode = "markers",name = "Test Data") p <- p %>% plotly::add_trace(data = df1, x = ~train_X, y = ~fitted, type="scatter", mode = "lines", name = "Fitted Line") p <- p %>% plotly::layout(title = 'Linear Regression for Test Data', yaxis = base::list(title = "Y", zeroline = FALSE), xaxis = base::list(title = "X", zeroline = FALSE)) base::print(p) # print results | cs |
Python-TensorFlow 코드
전참고로 위의 R코드의 Python-TensorFlow 코드는 다음과 같다:
LinearRegression.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | ''' A linear regression learning algorithm example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random # Parameters learning_rate = 0.01 training_epochs = 1000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model pred = tf.add(tf.multiply(X, W), b) # Mean squared error cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) # Gradient descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) # Display logs per epoch step if (epoch+1) % display_step == 0: c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ "W=", sess.run(W), "b=", sess.run(b)) print("Optimization Finished!") training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') # Graphic display plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show() # Testing example, as requested (Issue #2) test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1]) test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03]) print("Testing... (Mean square loss Comparison)") testing_cost = sess.run( tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]), feed_dict={X: test_X, Y: test_Y}) # same function as cost above print("Testing cost=", testing_cost) print("Absolute mean square loss difference:", abs( training_cost - testing_cost)) plt.plot(test_X, test_Y, 'bo', label='Testing data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show() | cs |
실행결과는 다음과 같다.
Epoch: 0050 cost= 0.366798908 W= 0.550465 b= -1.36298
Epoch: 0100 cost= 0.333326221 W= 0.532571 b= -1.23425
Epoch: 0150 cost= 0.303718448 W= 0.515741 b= -1.11318
Epoch: 0200 cost= 0.277529180 W= 0.499912 b= -0.999306
Epoch: 0250 cost= 0.254363596 W= 0.485024 b= -0.892206
Epoch: 0300 cost= 0.233873099 W= 0.471022 b= -0.791476
Epoch: 0350 cost= 0.215748549 W= 0.457853 b= -0.696736
Epoch: 0400 cost= 0.199716866 W= 0.445467 b= -0.607631
Epoch: 0450 cost= 0.185536489 W= 0.433817 b= -0.523826
Epoch: 0500 cost= 0.172993660 W= 0.422861 b= -0.445005
Epoch: 0550 cost= 0.161899269 W= 0.412556 b= -0.370871
Epoch: 0600 cost= 0.152086198 W= 0.402864 b= -0.301147
Epoch: 0650 cost= 0.143406436 W= 0.393748 b= -0.235569
Epoch: 0700 cost= 0.135729223 W= 0.385174 b= -0.173892
Epoch: 0750 cost= 0.128938764 W= 0.377111 b= -0.115882
Epoch: 0800 cost= 0.122932658 W= 0.369527 b= -0.0613231
Epoch: 0850 cost= 0.117620409 W= 0.362394 b= -0.0100088
Epoch: 0900 cost= 0.112921841 W= 0.355685 b= 0.0382534
Epoch: 0950 cost= 0.108766086 W= 0.349375 b= 0.0836452
Epoch: 1000 cost= 0.105090529 W= 0.343441 b= 0.126337
Optimization Finished!
Training cost= 0.105091 W= 0.343441 b= 0.126337
Testing... (Mean square loss Comparison)
Testing cost= 0.0917893
Absolute mean square loss difference: 0.0133012