일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 빅데이터
- Deep learning
- 통계
- Machine Learning
- 확률
- 김양재 목사
- Statistics
- WebGL
- 김양재 목사님
- 딥러닝
- nodeJS
- 데이터 과학
- 몽고디비
- 김양재
- data science
- Big Data
- node.js
- 인공지능
- No SQL
- Artificial Intelligence
- MongoDB
- 우리들교회
- c++
- openCV
- R
- 빅데이타
- 빅 데이터
- 빅 데이타
- 주일설교
- probability
- Today
- Total
목록이항분포 (4)
Scientific Computing & Data Science
이항분포 B(n,p)의 확률값은 N(np,np(1-p)) 분포로 근사화할 수 있다. 만약 확률 변수 X가 X ~ B(n,p)이면이며,이다. 이러한 근사화는 다음 조건에서 잘 맞는다:
포아송 분산 때때로 특정 범위 내에서 발생하는 사건의 수를 세는 확률 변수를 정의해야 할 필요가 습니다. 예를 들어, 실험자가 아이템 중 결함을 가지고 있는 아이템의 수에 관심이 있다거나 특정 시간 범위 내에 받는 전화 횟수 등입니다. 포아송(Poisson) 분포는 이러한 상황에 대한 적절한 모델을 제시합니다.Definition파라미터 λ를 갖는 포아송 확률 변수로 분한된 확률 변수 X는 다음과 같이 정의할 수 있으며: \( X \sim P(\lambda) \) \(\lambda\)는 이에 대한 확률 밀도 함수는 x = 0, 1, 2, 3, ...에 대해 \( P(X=x) = \displaystyle{\frac{e^{\lambda} \lambda^x}{x!}} \) 입니다. n이 충분히 클 경우(이를테면..
[Def] 음의 이항분포(Neagative Binomial Distribution)성공 확률 p로 동일한 독립 베르누이 시행에 있어 r번째까지의 시행은 파라미터 p와 r을 갖는 음의 이항분포(negative binomial distribution)를 갖는다고 하며, x = r, r+1, r+2, ...에 대한한 확률 밀도 함수는이며 기대값과 분산은 각각, 이다.
[Definition] 베리누이(Bernoulli) 확률 변수\( 0 \le p \le 1 \)의 파라미터 p를 갖는 베르누이 확률 변수는 0 또는 1의 값을 취하며 일어날 확률은, \(P(X=1) = p\) 이며, 일어나지 않을 확률은 \(P(X=0) = 1-p\) 이다. 이에 대한 기대값과 분산은 각각 \(E(X)=p\) 및 \(Var(X)=p(1-p)\)이다.[Proof]\( E(X) = \displaystyle{ \sum_{i=1}^{2}{x_i p_i} = x_1 p_1 + x_2 p_2 = (0)(1-p) + (1)(p) = p } \) \( Var(X) = E(X^2) - (E(X))^2 = \displaystyle{ \sum_{i=1}^{2}{x_i^2 p_i - p^2} = (0)^2(1..