일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 확률
- Machine Learning
- 빅데이터
- Statistics
- MongoDB
- 김양재 목사
- 통계
- probability
- No SQL
- 빅 데이타
- Big Data
- R
- 김양재
- 딥러닝
- 주일설교
- data science
- Artificial Intelligence
- c++
- 몽고디비
- Deep learning
- nodeJS
- 데이터 과학
- 김양재 목사님
- node.js
- 우리들교회
- 빅데이타
- 인공지능
- WebGL
- 빅 데이터
- openCV
Archives
- Today
- Total
목록워크플로우 (1)
Scientific Computing & Data Science
[Data Science] 빅데이터 워크플로우
빅데이터 워크플로우를 이해하려면, 먼저 프로세스가 무엇인지 그리고 이것이 데이터-집약적 환경에서 워크플로우와 어떤 관련이 있는지를 이해해야 한다. 프로세스는 기업이나 기관들에서 의사결정 및 업무목표 규정에 유용한 고수준의 전체 구조로 설계된다.이와는 대조적으로, 워크플로우는 업무에 대한 개별적인 방향성을 두고 프로세스 보다 더욱 특정의 데이터를 요구한다. 프로세스는 프로세스의 전반적 목표에 상응하는 하나 이상의 워크플로우로 구성된다.방법론적 시각에서 볼 때 빅데이터 워크플로우는 표준 워크플로우와 유사하다. 사실 어느 워크플로우든 업무 목표를 달성하기 위해서는 각 단계에서 데이터가 필요하다. 헬스케어 상황에서의 워크플로우를 예로 들어보자.가장 기초적인 워크플로우는 "채혈" 프로세스이다. 채혈은 전반적인 진..
Data Science/Posts
2014. 3. 19. 09:58