일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 김양재 목사
- 데이터 과학
- 김양재
- openCV
- 빅데이타
- 인공지능
- probability
- Big Data
- R
- 주일설교
- 통계
- node.js
- 우리들교회
- 김양재 목사님
- Artificial Intelligence
- Deep learning
- 딥러닝
- data science
- MongoDB
- Machine Learning
- 몽고디비
- Statistics
- No SQL
- 빅 데이터
- 빅데이터
- 빅 데이타
- 확률
- WebGL
- nodeJS
- c++
- Today
- Total
목록선형 회귀분석 (2)
Scientific Computing & Data Science
by Geol Choi | Jul. 8, 2017 이번 포스팅에서는 다중변수 선형 회귀(Multi-variable Linear Regression 또는 Multiple Linear Regression) 모델에 대한 간단한 이론과 이를 TensorFlow를 이용하여 최적화 문제로 풀고 결과를 비교해 보도록 하겠다.1. Theory by Example 1.1. Dataset - IQ와 신체적 특성과의 관계지능지수에 관하여 많은 사람들이 궁금해하는 것이 있다: "과연 뇌의 크기와 지능지수와의 상관성이 있을까? 있다면, 뇌의 크기로 지능지수를 유추할 수 있을까?" 이 질문에 답을 하기 위하여 몇몇 연구자들(Willerman, et al, 1991)은 38명의 대학생들을 상대로 뇌의 신체적 특성과 IQ를 조사하였..
by Geol Choi | November 23, 2014 이번 글에서는 Linear Regression에 대한 기초 통계 이론에 대한 소개와 이에 대한 R 프로그래밍에 대해 알아보기로 한다. Linear Regression은 간단하게 말해, 관찰된 데이터들의 변수들 간 관계를 1차원적인 Graph로 표현(이를 fitting이라고 함)하는 것이다. Linear Regression은 통계학의 역사관점에서 볼 때, 특정 변수가 다른 변수와 어떤 상관관계인지를 알아보기 위한 수단으로 발전해 왔다. 데이터를 관찰하여 이에 대한 모델을 세우고 이 모델을 통해 데이터에 대한 예측을 하고자 하는 것이 목표이며, 더 나아가 이에 대한 신뢰도를 어떻게 평가할 수 있는가가 이 이론에 대한 거의 전부라고 할 수 있다. 물론..