일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Big Data
- 통계
- 인공지능
- 김양재 목사님
- No SQL
- Artificial Intelligence
- node.js
- 데이터 과학
- 우리들교회
- 몽고디비
- 빅 데이타
- nodeJS
- 딥러닝
- probability
- openCV
- 주일설교
- Deep learning
- Statistics
- c++
- WebGL
- 김양재 목사
- 김양재
- MongoDB
- Machine Learning
- 빅데이타
- 빅 데이터
- 확률
- R
- 빅데이터
- data science
- Today
- Total
목록데이터과학 (24)
Scientific Computing & Data Science
ETL 도구들은 하나의 빅데이터 환경에서 얻은 데이터를 다른 데이터 환경으로 이전하는데 필요한 세 가지 중요한 기능(추출(Extract), 변형(Transform), 불러내기(Load))을 결합한다. 전통적으로, ETL은 데이터 웨어하우스 환경에서 일괄 처리 작업을 하는데 사용되어 왔다. 데이터 웨어하우스는 사업자들에게 사업 중점에 관계되는 데이트에 대한 분석과 리포트를 강화하는 수단을 제공한다. ETL 도구들은 데이터 웨어하우스가 요구하는 포맷으로 데이터를 변형한다.변형은 사실상 데이터가 데이터 웨어하우스에 로딩되기 전 중간 위치에서 실행된다. IBM, Informatica, Pervasive, Talend, Pentaho를 포함한 많은 소프트웨어 벤더들이 ETL 소프트웨어 툴을 제공한다.ETL은 다음..
여러분은 빅데이터 분석에 대한 뉘앙스를 깨닫게 될 것이다. 이것은 정말 작은 데이터에 관한 것이다. 이것이 혼란스러워 보일 수도 있고 전체적인 전제에 위반되는 것처럼 보일 수도 있지만, 작은 데이터는 빅데이터 분석의 결과이다. 전혀 새로운 개념도 아니며, 오랜동안 데이터 분석을 해왔던 사람들에게 익숙하지 않은 것도 아니다. 전체 작업 공간은 커지고 있으나, 해답은 "작다"는 것 어딘가에 존재한다.전통적 데이터 분석은 고객 정보, 제품 정보, 거래 정보, 원격측정 데이터 등등으로 가득찬 데이터베이스로 시작했다. 그 당시에도 가용 데이터는 차거 넘쳐서 효율적인 데이터 분석이 불가능했다. 시스템, 네트워크, 소프트웨어는 스케일을 논할 만한 성능이나 용량이 되지 않았다. 산업 곳곳에서 보다 작은 데이터 세트를 ..
원문: http://www.ciokorea.com/slideshow/12832?slide=1#stage_slide페이스북"데이터 과학자는 소프트웨어 엔지니어와 정량 조사에 익숙한 전문가입니다. 온라인 소셜 네트워크의 연구에 강한 관심과 우리가 최고의 제품을 만들도록 도울 질문을 확인하고 답을 줄 수 있는 열정을 가진 데이터 과학자를 우대합니다.” 출처 : 페이스북의 데이터 과학자 채용 공고자격 조건 : 관련 분야의 이공계 석사 또는 박사 학위 소지자거나 관련 업무 경력 4년 이상인 사람; 정성적인 접근을 사용한 분석 문제 해결하는 데 경험이 풍부한 사람; 다양한 정보에서 데이터를 가져와 대용량의 복잡한 고차원 분석에 익숙한 사람; 데이터와 관련한 고난이도의 질문에 답을 찾고 경험적 연구에 대해 열정적으로..
최근 좋은 이유로 빅데이터 분석에 대한 대대적 광고를 하고 있다. 이러한 움직임에 동참하려면 빅데이터 분석의 특성을 알아야 한다. 기업들은 빅데이터에 무언가 있다는 것을 인지하고 있지만 최근까지도 데이터 수집에 어려움을 겪어 왔다. 분석에 대한 이러한 추세는 빅데이터 분석 움직임의 흥미로운 양상이다.기업들은 그들이 수집하고 있는 데이터에 접근하고 분석할 수 있다는 것과 이 데이터로부터 통찰력을 얻을 수 있다는 사실에 많은 기대를 하고 있지만, 효율적으로 관리되고 분석된 적은 없다. 이는 방대한 양의 다양한 데이터를 시각화하는 것일 수도 있고, 실시간으로 스트리밍을 분석하는 것일 수도 있다. 어떤 면에서는 진화적이며 어떤 면에서는 혁명적이다.그래서 당신의 기업이 빅데이터 분석을 추진 시 어떤 차별화를 갖는..