일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 몽고디비
- 확률
- node.js
- openCV
- 우리들교회
- 통계
- R
- probability
- WebGL
- 데이터 과학
- 주일설교
- 빅 데이터
- 김양재 목사
- 빅데이타
- Big Data
- 인공지능
- No SQL
- MongoDB
- 빅데이터
- 빅 데이타
- Machine Learning
- nodeJS
- data science
- Statistics
- 김양재 목사님
- c++
- Deep learning
- 딥러닝
- Artificial Intelligence
- 김양재
- Today
- Total
목록데이터과학자 (12)
Scientific Computing & Data Science
이 글에 소개되는 기술들은 대부분의 데이터 과학자 및 관련 업계 종사자들이 매일의 업무에 사용하는 기술로써 벤더가 제공하거나 직접 설계해서 쓰는 툴들이다. 아래 40개 중 어느 링크를 클릭하면 논의가 되고 있는 관련 글을 자세하게 읽을 수 있다. 이들 대부분의 글들은 구글 검색으로는 찾기 어렵기 때문에 데이터 과학, 머신러닝, 통계 과학에 대한 숨은 문헌에 접근하는 것이 된다. 이들 중 대다수는 논의가 되고 있는 기술에 대한 근본적인 이해를 돕고자 하는 것이며, 심도있는 참고문헌 및 소스코드를 제공한다.별표(*)가 되어있는 기술들은 소위 딥 데이터 과학(Deep Data Science)에 속하며, 이는 머신러닝, 컴퓨터 과학, 오퍼레이션 연구, 수학, 통계학 등의 분야와 조금이라도 겹치는 데이터 과학의 ..
데이터 과학이 R, Python, Hadoop, SQL 및 전통적 머신러닝 또는 통계 모델링에 대한 것이라고 믿는 사람들이 많다. 아래의 글들은 데이터 과학이 얼마나 현대적이며, 넓고 깊은 분야인지를 기본적으로 보여준다. 어떤 데이터 과학자들은 실제로 위에 나열된 것들 중 아무 것도 하지 않는다. 어떠한 코딩도 하지 않고, 대신, 머신 간 통신 프레임워크에서 다양한 어플리케이션들이 서로 대화하도록 하는 일을 데이터 과학자도 있다. 그러나 대부분의 데이터 과학자들이 R, Python, Hadoop 관련 시스템을 사용하는 것은 사실이다.심층 데이터 과학에 대한 글(아래 참고)을 읽어보면 데이터 과학 또한 많은 사람들(자신을 데이터 과학자라고 부르는 사람들)이 반복적으로 하는 일을 자동화하는 것을 알 수 있다..
* 이 글은 Data Science Central의 "Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics"을 번역한 것이다. 이번 글에서는 데이터 과학자의 다양한 역할과 머신러닝, 딥 러닝, AI, 통계학, IoT, 오퍼레이션 리서치, 응용 수학 등과 같은 관련 분야와 데이터 과학이 어떻게 다른지 공통점은 무엇인지 기술하고자 한다.데이터 과학은 넓은 분야를 포괄하는 만큼, 어떤 사업 분야에서도 마주칠 수 있는 데이터 과학자의 다양한 유형에 대해 살펴보기록 한다: 각자는 자신이 미처 몰랐던 스스로가 데이터 과학자임을 깨닫게 될 수도 있다.다른 과학 분야의 소양과 마찬가지로, 데이터 과학자들은 관련 소양으로부..
원문 : http://www.bloter.net/archives/265786 최근 IT 업계에서 가장 성장하고 있는 분야 중 하나는 데이터과학이다. 국내외 대기업부터 스타트업까지 데이터의 중요성을 강조하고, 기업은 실력 있는 데이터과학자 찾기에 분주하다. 하지만 생각보다 데이터과학자가 무엇을 하는 사람인지, 무엇을 준비해야 데이터과학자가 될 수 있는지 아는 사람은 많지 않다. 지난 10월14일, 데이터과학자들이 함께 모여 기술과 경험을 공유하는 장이 열렸다. ‘데이터야 놀자’에서 데이터 과학자를 꿈꾸는 사람이나 데이터분석 조직을 준비하는 이들에게 도움이 될만한 이야기를 들을 수 있었다.데이터엔지니어, 데이터애널리스트, 데이터사이언티스트?업계에서 데이터과학자가 하는 일은 생각보다 다양하다. 그러다보니 직함..
원문 : http://www.ciokorea.com/news/14901데이터 과학자는 빅 데이터 트렌드 속에서 부상하고 있는 대표적 직업군이다. 이들은 수 페타바이트(petabyte)의 데이터를 조작해 새로운 수익 가능성을, 그리고 궁극적으로는 비즈니스의 흐름을 만들어내는 전문가들이다. 맥킨지 글로벌 인스티튜트는 보고서를 통해 빅 데이터를 적절히 활용함으로써 기업들이 60% 이상의 영업 마진 증대 효과를 거둘 수 있을 것이라 설명한 바 있다. 그러나 많은 기업들이 그들이 보유한 데이터를 제대로 활용할 인재를 확보하는데 어려움을 겪고 있는 것 역시 사실이다. CIO들은 비즈니스적 통찰력과 데이터베이스 전문 기술, 그리고 커뮤니케이션 능력을 고루 갖춘 인재를 탐색하고 고용하는데 고군분투하고 있다. IT 채용..
원문 : http://www.ciokorea.com/news/18948빅 데이터와 관련해 여러 미디어들은 엄청난 돈을 들여 기술 좋은(그리고 돈도 많이 받는) 데이터 과학자를 고용해야 한다고 호들갑이다. 하지만 미디어만 믿고 대학원 지원서를 썼다간 낭패를 볼 지도 모른다. 대부분 기업들은 빅 데이터를 ‘스마트 데이터’로 전환시키기 위해 데이터 과학자를 새로 고용하는 대신 데이터 분석 기술을 강화하고 기존 직원들을 교육하는데 초점을 맞추고 있기 때문이다. 중소기업과 ‘빅 데이터’일단 대부분의 중소기업들은 요즘 한창 난리인 빅 데이터 열풍에 크게 동조하지 못하고 있다는 진단이다. 컴티아 연구소장 팀 허버트는 중소기업 문제의 대부분이 실제로 빅 데이터와 관계가 없는 것이기에 이와 관련해 새로운 인력을 고용하는..
원문 : http://www.ciokorea.com/news/20404빅 데이터가 부상하면서 기업들이 자사 IT 인력들을 데이터 과학자, 데이터 아키텍트, 데이터 시각화 전문가, 데이터 엔지니어 등 숙련된 고급 데이터 전문가로 강화하고자 애쓰고 있다. 현재 자신의 IT 기술력을 강화하고 새로운 경력 경로를 모색하고 있다면, 미국 대학 강의 무료로 들을 수 있는 웹사이트인 코세라(COURSERA)를 확인하길 바란다. 특히 존스홉킨스 대학은 데이터 과학에 특화된 수업을 9강좌나 시작하려고 한다. 스탠포드대학의 두 컴퓨터과학 교수인 앤드류 응과 다프네 콜러가 설립한 코세라는 컴퓨터과학, 생물학, 의학, 경영, 공학, 법학 등 수백 개의 대학 수업에 대해 온라인으로 무료로 접근할 수 있도록 했다. 브라운, 컬럼..
빅데이터의 현재 상태에 신속하게 반응하려면 유동 데이터가 필요하다. 신용카드 거래를 완료하거나 이메일을 보내려면, 데이터가 어느 한 위치에서 다른 위치로 전송되어야 한다. 데이터가 데이터 센터나 클라우드의 데이터베이스에 저장되어 있다면 그 데이터는 유동성이 없다. 반면, 데이터가 하나의 위치에서 다른 위치로 전송될 때 이 데이터는 유동적이다.비즈니스 인사이트를 얻기 위해 거의 실시간에 가깝게 방대한 양의 데이터를 처리해야 하는 기업들은 데이터가 계속적으로 흐르고 있는 동안에도 데이터를 정비하고 있을 가능성이 높다. 유동 데이터와 방대한 양의 데이터는 손에 손을 잡고 있다. 연속적인 스트림의 방대한 양의 데이터에 대한 많은 실세계 예시들이 현재 사용되고 있다:센서들은 고도로 민간한 의료 장비와 연결되어 성..
ETL 도구들은 하나의 빅데이터 환경에서 얻은 데이터를 다른 데이터 환경으로 이전하는데 필요한 세 가지 중요한 기능(추출(Extract), 변형(Transform), 불러내기(Load))을 결합한다. 전통적으로, ETL은 데이터 웨어하우스 환경에서 일괄 처리 작업을 하는데 사용되어 왔다. 데이터 웨어하우스는 사업자들에게 사업 중점에 관계되는 데이트에 대한 분석과 리포트를 강화하는 수단을 제공한다. ETL 도구들은 데이터 웨어하우스가 요구하는 포맷으로 데이터를 변형한다.변형은 사실상 데이터가 데이터 웨어하우스에 로딩되기 전 중간 위치에서 실행된다. IBM, Informatica, Pervasive, Talend, Pentaho를 포함한 많은 소프트웨어 벤더들이 ETL 소프트웨어 툴을 제공한다.ETL은 다음..
원문: http://www.ciokorea.com/slideshow/12832?slide=1#stage_slide페이스북"데이터 과학자는 소프트웨어 엔지니어와 정량 조사에 익숙한 전문가입니다. 온라인 소셜 네트워크의 연구에 강한 관심과 우리가 최고의 제품을 만들도록 도울 질문을 확인하고 답을 줄 수 있는 열정을 가진 데이터 과학자를 우대합니다.” 출처 : 페이스북의 데이터 과학자 채용 공고자격 조건 : 관련 분야의 이공계 석사 또는 박사 학위 소지자거나 관련 업무 경력 4년 이상인 사람; 정성적인 접근을 사용한 분석 문제 해결하는 데 경험이 풍부한 사람; 다양한 정보에서 데이터를 가져와 대용량의 복잡한 고차원 분석에 익숙한 사람; 데이터와 관련한 고난이도의 질문에 답을 찾고 경험적 연구에 대해 열정적으로..