일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 김양재 목사님
- 빅데이타
- probability
- 빅데이터
- MongoDB
- 김양재 목사
- No SQL
- Artificial Intelligence
- Big Data
- Machine Learning
- 확률
- 빅 데이터
- 인공지능
- 주일설교
- Deep learning
- Statistics
- 몽고디비
- openCV
- WebGL
- 데이터 과학
- 김양재
- 우리들교회
- c++
- 딥러닝
- 빅 데이타
- node.js
- nodeJS
- data science
- 통계
- R
- Today
- Total
목록기계학습 (27)
Scientific Computing & Data Science
지난 글, "Windows 환경에서 Docker를 이용하여 TensorFlow 설치"하는 방법에 대하여 소개하였다.대부분의 Machine Learning 알고리즘이 고성능 컴퓨팅이 필요한 경우가 많으므로, 자신이 사용하는 PC 환경에 OpenCL, CUDA와 같은 GPU 컴퓨팅을 지원하는 비디오 카드가 있으면 좋겠지만(물론 CPU 병렬 컴퓨팅을 통해서도 가능은 하다), 그렇지 않은 경우 Amazon Web Services(이하 AWS)의 EC2에서 GPU를 지원하는 환경을 설정하여 TensorFlow를 사용하는 것도 하나의 방법이다.이 글은 AWS EC2에 GPU를 지원하는 환경을 설정하여 TensorFlow를 설치하고 사용하는 방법을 소개하고자 한다.* 주의: AWS에 계정이 있으며, AWS를 이용하여..
[Lec 00]수업의 개요와 일정[Lec 01]기본적인 Machine Learning의 용어와 개념 설명[Lab 01]TensorFlow의 설치 및 기본적인 Operations[Lec 02]Linear Regression의 Hypothesis와 Cost[Lab 02]TensorFlow로 간단한 Linear Regression 구현[Lec 03]Linear Regression의 Cost 최소화 알고리즘[Lab 03]Linear Regression의 Cost 최소화의 TensorFlow 구현[Lec 04]Multi-variable Linear Regression[Lab 04]Multi-variable Linear Regression을 TensorFlow에서 구현하기[Lec 5-1]Logistic Classi..
TensorFlow는 공식적으로 Mac과 Linux 환경에서 설치를 지원하며, 아직 공식적으로 Windows에 대한 지원을 하지 않는다.그러나, 최근 가상 컨테이너 기술인 Docker를 이용하여 Windows 환경에서 TensorFlow를 설치할 수 있게 되었는데 이에 대한 방법을 알아보도록 하겠다.1 단계 - Docker Toolbox 설치Windows에 Docker Machine을 설치하려면,(1) Windows 32/64 bit(2) Windows 7+(3) CPU 가상화가 가능 CPU 가상화가 가능하지는 MS에서 제공하는 가상화 감지 도구(Hardware-Assisted Virtualization Detection Tool)를 다운받고 실행해 본다.실행하였을 때 아래 이미지와 같이 "This co..
이번 글에서는 R에서 병렬처리를 하는 방법에 대하여 소개하도록 한다.R-bloggers의 글, How-to go parallel in R - basics + tips의 내용을 최대한 참고하여 정리해 보았다. [목차]1. lapply에 대하여2. parallel 패키지3. foreach 패키지4. 디버깅5. 캐싱(Caching)6. 계산 부하 밸런싱7. 이미지 프로세싱 예제 1. lapply에 대하여R이 기본적으로 제공하는 함수들 중 가장 많이 사용되는 함수가 lapply일 것이다.이와 유사한 함수로 apply, sapply, tapply 등이 있는데 각자의 쓰임새가 있으며, 자신이 R유저라고 자신한다면 이 함수들이 어느 상황에 적절히 쓰이는지 이해하고 자유자재로 다룰 수 있어야 한다고 생각한다. 다음 코..
데이터 과학이 R, Python, Hadoop, SQL 및 전통적 머신러닝 또는 통계 모델링에 대한 것이라고 믿는 사람들이 많다. 아래의 글들은 데이터 과학이 얼마나 현대적이며, 넓고 깊은 분야인지를 기본적으로 보여준다. 어떤 데이터 과학자들은 실제로 위에 나열된 것들 중 아무 것도 하지 않는다. 어떠한 코딩도 하지 않고, 대신, 머신 간 통신 프레임워크에서 다양한 어플리케이션들이 서로 대화하도록 하는 일을 데이터 과학자도 있다. 그러나 대부분의 데이터 과학자들이 R, Python, Hadoop 관련 시스템을 사용하는 것은 사실이다.심층 데이터 과학에 대한 글(아래 참고)을 읽어보면 데이터 과학 또한 많은 사람들(자신을 데이터 과학자라고 부르는 사람들)이 반복적으로 하는 일을 자동화하는 것을 알 수 있다..
* 이 글은 Data Science Central의 "Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics"을 번역한 것이다. 이번 글에서는 데이터 과학자의 다양한 역할과 머신러닝, 딥 러닝, AI, 통계학, IoT, 오퍼레이션 리서치, 응용 수학 등과 같은 관련 분야와 데이터 과학이 어떻게 다른지 공통점은 무엇인지 기술하고자 한다.데이터 과학은 넓은 분야를 포괄하는 만큼, 어떤 사업 분야에서도 마주칠 수 있는 데이터 과학자의 다양한 유형에 대해 살펴보기록 한다: 각자는 자신이 미처 몰랐던 스스로가 데이터 과학자임을 깨닫게 될 수도 있다.다른 과학 분야의 소양과 마찬가지로, 데이터 과학자들은 관련 소양으로부..
이번 글에서는 Support Vector Machine(이하 SVM)의 개념과 간단한 이론에 대해 이해하고자 한다. 1. SVM의 개념SVM의 개념은 매우 간단한데, 특징에 따라 서로 유사한 그룹끼리 칸막이를 쳐서 나누는 것이다.이 칸막이를 초평면(Hyperplane)이라고 부른다.SVM의 기초가 되는 수학적 이론은 수십년에 걸쳐 정리가 되었지만, 최근이 되어서야 주목을 받게 되었는데, 그 이유는 첫번째로 성능이 월등히 개선되었고, 이에 따라 여러 프로그래밍 언어를 지원하는 잘 정돈된 라이브러리가 등장했기 때문이다.SVM은 분류 및 수치 예측 등 거의 모든 학습 문제에 잘 대처할 수 있는데 특히 알고리즘의 성공적인 열쇠가 되는 것은 패턴 인식이다.주목할 만한 응용분야는 다음과 같다:바이오인포매틱스 분야에..
Written by Geol Choi | Nov. 12, 2016 이전 글(Naive Bayes Spam Filter Part 1.)에서 Naive Bayes에 대한 이론을 다뤘습니다. 이번 글에서는 이론을 바탕으로 휴대폰의 SMS 데이터의 Spam Filter를 작성해 보도록 하겠습니다. 일반적인 데이터 분석 프로세스는, (1) 문제 정의(2) 데이터 획득(3) 데이터 클린업(4) 데이터 정규화(5) 데이터 변형 및 가공(6) 데이터 탐구 기반 통계(7) 데이터 탐구 기반 시각화(8) 예측 모델(9) 모델 평가(10) 결과에 대한 시각화 및 해석(11) 솔루션 배포 인데, Machine Learning에 의한 결과 도출도 이 순서와 크게 다르지 않으며, 전체적인 순서는 다음 그림과 같습니다. 1. 데이..
Written by Geol Choi | Nov. 07, 2016 이번 글에서는 Naive Bayes 이론을 기반으로 한 Spam Filter 작성에 대해 알아보도록 하겠습니다. Theoretical Background서로 종속적인 사건 A, B가 있을 때 사건 B가 일어났다는 전제 하에 사건 A가 일어날 확률은 다음과 계산됩니다: \(P(A\mid B) = \displaystyle{\frac{P(A \cap B)}{P(B)}}\) ...(1) 여기서 \(P(A \mid B)\)를 조건부 확률(Conditional Probability)이라고 하며, 이는 사건 A와 B가 동시에 일어날 확률, \(P(A \cap B)\)과 사건 B가 일어날 확률에 의해 결정됩니다. 즉, Bayes' Theorem이 의미하..