일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 몽고디비
- Deep learning
- 데이터 과학
- WebGL
- probability
- 주일설교
- 우리들교회
- 빅데이타
- Statistics
- 빅데이터
- Big Data
- data science
- 통계
- 딥러닝
- c++
- 김양재 목사
- 김양재
- nodeJS
- Artificial Intelligence
- 빅 데이타
- 김양재 목사님
- 빅 데이터
- 인공지능
- Machine Learning
- MongoDB
- node.js
- No SQL
- openCV
- 확률
- R
- Today
- Total
목록결정 트리 (2)
Scientific Computing & Data Science
본 포스팅에서는 머신러닝과 관련 핵심용어에 대한 설명을 하도록 한다.1. 머신러닝 (Machine Learning; ML)Mitchell에 따르면, ML은 "경험에 의해 자동으로 개선되는 컴퓨터 프로그램을 어떻게 구현할 것인가"와 관련이 깊다. ML은 자연적으로 여러 분야에 걸쳐있으며, 컴퓨터 과학, 통계, 인공지능 및 기타 분야의 다양한 기술을 도입한다. ML 연구의 주요 성과물은 경험으로부터 자동 개선을 가능하게 하는 알고리즘, 컴퓨터 비전, 인공지능, 데이터 마이닝(Data Mining)과 같은 분야 적용할 수 있는 알고리즘 등이다.2. 분류 (Classification)분류는 데이터를 정해진 카테고리에 지정하는 모델을 구축하는 것과 관련이 깊다. 이 모델들은 알고리즘이 학습할 수 있도록 미리 라벨..
OverviewDecision Tree 알고리즘 중 가장 알려진 것 중 하나컴퓨터 과학자 J. Ross Quinlan이 개발함Iterative Dichotomiser(ID3)에 대한 개선한 C4.5 알고리즘을 개선한 것임RuleRequest Research에서 알고리즘을 다운받을 수 있음 강점 약점 대부분의 문제에 적합함 손실 데이터를 포함한 숫자형 또는 명칭형 데이터를 다룰 수 있는 자동화 Learning Process중요하지 않은 특징 제거데이터 셋의 규모에 상관없이 사용 가능수학 배경 없이도 해석할 수 있는 모델 생성다른 복잡한 모델 보다 효율적 Decision Tree 알고리즘은 많은 수의 레벨을 갖는 Feature에 대한 구분에 있어 치우는 경향이 있음모델에 대한 과다 적합 또는 미적합 되는 경..