일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- probability
- No SQL
- 김양재 목사
- WebGL
- 통계
- MongoDB
- openCV
- c++
- 빅데이터
- 빅 데이타
- 김양재 목사님
- Statistics
- Big Data
- Machine Learning
- nodeJS
- 우리들교회
- 김양재
- 인공지능
- Artificial Intelligence
- Deep learning
- 빅데이타
- 확률
- 딥러닝
- node.js
- 빅 데이터
- 주일설교
- 데이터 과학
- data science
- R
- 몽고디비
- Today
- Total
목록Scientific Computing (22)
Scientific Computing & Data Science
현재 CUDA 샘플 코드 프로젝트가 지원하는 Microsoft의 통합 개발환경 툴인 Visual Studio의 버전은 2008, 2010, 2012 세 가지를 지원한다.샘플 프로젝트를 2008과 2010에서 열어 빌드하면 아무 에러가 발생하지 않는데 2012에서 열어 빌드하면 다음과 같은 에러가 발생할 것이다:1>C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V110\BuildCustomizations\CUDA 6.0.targets(511,9): error : The Visual Studio 2013 platform toolset is not currently supported. Please change the Platform Toolset property in..
MATLAB CODE: "Laplacian.m" function Laplacian %% read an image img = imread('.\res\test_01.jpg'); img = rgb2gray(img); subplot(2,1,1); imshow(img); mask = [0 -1 0 ; -1 4 -1 ; 0 -1 0]; %mask = [1 1 1 ; 1 -8 1 ; 1 1 1]; %mask = [-1 -1 -1 ; -1 8 -1 ; -1 -1 -1]; [rSize, cSize] = size(mask); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners subMask = mask(2:3,2..
MATLAB CODE: "HomogeneityOperator.m" function HomogeneityOperator %% read an image img = imread('./res/test_02.jpg'); imshow(img); img = rgb2gray(img); subplot(2,1,1); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners i = 1; j = 1; tmp(1) = abs(img(i,j) - img(i,j+1)); tmp(2) = abs(img(i,j) - img(i+1,j+1)); tmp(3) = abs(img(i,j) - img(i+1,j)); newImg(i,j) =..
MATLAB CODE: "Sharpening.m"function Sharpening %% read an image img = imread('./res/test_02.jpg'); img = rgb2gray(img); subplot(2,1,1); imshow(img); %mask = [-1 -1 -1 ; -1 9 -1 ; -1 -1 -1]; mask = [0 -1 0 ; -1 5 -1 ; 0 -1 0]; [rSize, cSize] = size(mask); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners subMask = mask(2:3,2:3); i = 1; j = 1; subMat = img(i..
MATLAB CODE: "Gaussian.m"function Gaussian %% read an image img = imread('./res/test_02.jpg'); img = rgb2gray(img); subplot(2,1,1); imshow(img); mask = [1/16 1/8 1/16 ; 1/8 1/4 1/8 ; 1/16 1/8 1/16]; [rSize, cSize] = size(mask); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners subMask = mask(2:3,2:3); i = 1; j = 1; subMat = img(i:i+1,j:j+1); newImg(i,j) = ..
MATLAB CODE: "Blurring.m"function Blurring %% read an image img = imread('./res/test_01.jpg'); img = rgb2gray(img); subplot(2,1,1); imshow(img); mask = (1/9)*ones(3,3); [rSize, cSize] = size(mask); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners subMask = mask(2:3,2:3); i = 1; j = 1; subMat = img(i:i+1,j:j+1); newImg(i,j) = sum(sum(subMask.*subMat)); sub..
MATLAB CODE: "Embossing.m"function Embossing %% read an image img = imread('./res/test_01.jpg'); img = rgb2gray(img); subplot(2,1,1); imshow(img); mask = [-1 0 0 ; 0 0 0 ; 0 0 1]; [rSize, cSize] = size(mask); [nrow, ncol] = size(img); img = cast(img, 'double'); newImg = zeros(nrow,ncol); % Corners subMask = mask(2:3,2:3); i = 1; j = 1; subMat = img(i:i+1,j:j+1); newImg(i,j) = sum(sum(subMask.*su..
[Step 1]명암 값 j의 빈도 수 hist[j]를 계산하여 입력 영상의 히스토그램을 작성한다. [Step 2]각 명암 값 i에서 0~i까지의 누적 빈도 수(누적합)를 계산한다. [Step 3]2단계에서 구한 누적 빈도 수를 정규화한다(정규화 누적합).n[i] = sum[i] * Imax / NN: 화소의 총수Imax: 최대 명도 값 [MATLAB CODE]function Hist %% read an image img = imread('.\res\vectorc.jpg'); img = rgb2gray(img); [nrow, ncol] = size(img); subplot(1,2,1); imshow(img); %% vectorize img to tmp tmp = []; for(i = 1:nrow) tmp ..
This is one of our researches done in CJ POWERCAST, which is dedicated from the members of our team, T.J. Kwak and J.M. Park and G.Choi. INTORUDUCTIONGPU (Graphics Process Unit) has been traditionally used only for display of graphical contents with graphics acceleration. Because of the characteristics of display that represent pixels as a massive array, memory and processing architectures of GP..
by Geol Choi | Mar. 30, 2014목 차 1. GPU 개괄1.1. 병렬 컴퓨터로서의 GPU1.2. 현대 GPU의 구조1.3. 고수준의 병렬 계산을 하는 이유?1.4. 병렬 프로그래밍 언어와 모델2. GPU 역사2.1. 그래픽스 파이프라인의 진화2.2. GPU 계산2.3. 미래 발전 동향3. 최신 기술 동향3.1. 다양한 분야에서의 병렬 계산3.2. 하이브리드 GPU 기술3.3. 통합 셰이더 기술3.4. NVIDIA의 Fermi 아키텍쳐3.5. NVIDIA의 Kepler 아키텍쳐3.6. NVIDIA의 Tesla 프로세서4. 컴퓨터 그래픽스 산업 분야에서의 GPU 활용4.1. PhysX4.2. OptiX4.3. SceniX4.4. CompleX5. 맺음말 1. GPU 개괄Intel Penti..