일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Machine Learning
- 확률
- 김양재 목사님
- 우리들교회
- node.js
- 빅데이터
- probability
- Statistics
- 빅 데이터
- Artificial Intelligence
- 데이터 과학
- 통계
- openCV
- 김양재 목사
- R
- 김양재
- WebGL
- No SQL
- 빅 데이타
- 몽고디비
- 빅데이타
- nodeJS
- Deep learning
- c++
- Big Data
- 주일설교
- 인공지능
- MongoDB
- 딥러닝
- data science
- Today
- Total
목록Data Science/Probability & Statistics (43)
Scientific Computing & Data Science
Expected Value of a Discrete Random Variable확률밀도함수 \(P(X = x_i) = p_i\)를 갖는 이산확률변수의 기대값(Expected Value 또는 Expectation)은 \(\displaystyle{\mathrm{E}(\mathbf{X})} = \sum_{i}{P_i x_i}\)이며, \(\mathrm{E}(\mathbf{X})\)는 확률변수로 취해지는 평균값을 의미한다. 또한 확률변수의 평균이라고도 알려져 있다.Expectation of a Continuous Random Variable확률밀도함수 \(f(x)\)를 갖는 연속 확률 변수의 기대값은 \(\displaystyle{\mathrm{E}(\mathbf{X}) = \int_{\mathrm{state \..
\(A_1, ..., A_n\)이 샘플 공간의 분할이면, 사건 \(B\)의 조건 하에 사건 \(A_i\)의 Posterior Probability는 확률 \(P(A_i)\)와 \(P(B \mid A_i)\)를 이용하여 다음과 같이 구할 수 있다. \(\displaystyle{ P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{\sum_{j=1}^{n}{P(A_j)P(B \mid A_j)}} }\) 이를 Bayes' Theorem이라고 한다. Bayes' Theorem은 확률이론에 있어 매우 중요한 결론이다. 이는 새로운 정보가 기존의 확률 정보의 업데이트 또는 개정에 어떻게 유용하게 사용될 수 있는가에 대한 방법을 제시해 주기 때문이다. 어떤 경우에 있어 Prior Probab..
A1, ..., An을 샘플 공간 S의 분할이라고 하고 각 Ai를 상호 배타적이라고 하면, \(S = A_1 \cup ... \cup A_n\) 라고 할 수 있다. n개의 이벤트에 대한 확률 P(A1), ... ,P(An)이 알려져 있으며 또한 조건부 확률 \(P(B|A_i)\) 도 알려져 있다고 하자. P(B)를 계산하기 위해 P(Ai)와 P(B|Ai)를 이용한다. 사건 \(A_i \cap B\)가 상호 배타적이라면 다음이 성립된다: \(P(B) = \displaystyle{\sum_{j=1}^{n}{P(A_j)P(B|A_j)}}\) 이 결과를 "전체 확률의 법칙(Law of Total Probability)"라고 한다. 다시 한 번 정리하면: 만약 \(A_1\), ..., \(A_n\)을 샘플 공간의..