일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 김양재 목사
- 데이터 과학
- 딥러닝
- 김양재 목사님
- 주일설교
- R
- 몽고디비
- Deep learning
- Big Data
- node.js
- nodeJS
- WebGL
- openCV
- 확률
- 빅 데이타
- 빅 데이터
- No SQL
- Artificial Intelligence
- Machine Learning
- 빅데이타
- Statistics
- 통계
- 우리들교회
- 인공지능
- MongoDB
- data science
- probability
- 빅데이터
- c++
- 김양재
- Today
- Total
Scientific Computing & Data Science
Written by Geol Choi | Oct. 21, 2017 이번 포스팅에서는 TensorFlow™(TF)의 시각화 도구인 TensorBoard를 이용하여 Computation Graph를 시각화하는 방법에 대하여 알아보도록 하겠습니다. 실행환경은 다음과 같습니다:OS: Windows 7 64-bitAnaconda: Python 3.6 (5.0.0)TensorFlow: r1.3R: 3.4.2 short summerRStudio: 1.0.136 필자의 실행환경은 위와 같지만, Windows가 아닌 다른 OS 환경에서도 동일한 방식으로 실행할 수 있으리라 예상됩니다. 본 튜토리얼은 딥러닝(Deep Learning;DL)에 대한 기본적인 개념을 이해하고 있으며, TensorFlow의 DL 구현에 대한 기..
Written by Geol Choi | Oct. 01, 2017 이번 포스팅에서는 R에서 GPU(CUDA)가 지원되는 TensorFlow 실행환경을 구축하는 방법에 대하여 알아보겠습니다. 수많은 삽질(?)을 한 끝에 알아낸 나름의 방법인데 정답인지는 모르겠습니다. 다만 이 방법으로 실행환경을 설정하면 확실히 R에서 GPU가 지원되는 TensorFlow를 활용할 수 있을 것입니다.설치환경Windows 7 OS 환경에서 설치방법을 설명하겠지만, Mac OS나 Linux 계열에서도 비슷한 방법으로 설치가 가능하리라 생각됩니다. 필자의 설치환경은 다음과 같습니다:OS: Windows 7 64bit그래픽스 카드: Nvidia GeForce GTC 750TiR: 3.4.2 (Short Summer) - 이 글을 ..
Written by Geol Choi | Sep. 30, 2017 이번 포스팅은 교차검증에 대한 간단한 개념만 설명합니다.개요머신러닝 모델을 설계하다보면 설계에 필요한 파라미터들이 있습니다. 즉, 모델의 동작을 위해 결정되어야 할 파라미터들인데 이 파라미터들에 의해 모델 성능이 크게 영향을 받는 경우가 많습니다. 이렇게 머신러닝 모델을 설계하기 위해 필요한 파라미터들을 Hyperparameters라고 합니다. 사실 Hyperparameters를 정하는 것은 여간 까다로운 일이 아닙니다. 왜냐하면 정해야 할 파라미터가 1~2개라면 큰 문제가 없겠지만 파라미터가 1개씩 추가될 때마다 검증의 복잡도는 기하급수적으로 증가하기 때문입니다. 게다가 각 Hyperparameter에 대하여 범위를 어떻게 정해야 하며 ..