일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- c++
- 확률
- data science
- R
- WebGL
- 몽고디비
- 빅데이타
- Deep learning
- 김양재
- nodeJS
- 김양재 목사님
- Statistics
- node.js
- 통계
- openCV
- 우리들교회
- 인공지능
- MongoDB
- 김양재 목사
- 주일설교
- Artificial Intelligence
- 빅데이터
- 빅 데이타
- No SQL
- 빅 데이터
- Big Data
- 딥러닝
- probability
- Machine Learning
- 데이터 과학
- Today
- Total
목록ggplot (2)
Scientific Computing & Data Science
OverviewDecision Tree 알고리즘 중 가장 알려진 것 중 하나컴퓨터 과학자 J. Ross Quinlan이 개발함Iterative Dichotomiser(ID3)에 대한 개선한 C4.5 알고리즘을 개선한 것임RuleRequest Research에서 알고리즘을 다운받을 수 있음 강점 약점 대부분의 문제에 적합함 손실 데이터를 포함한 숫자형 또는 명칭형 데이터를 다룰 수 있는 자동화 Learning Process중요하지 않은 특징 제거데이터 셋의 규모에 상관없이 사용 가능수학 배경 없이도 해석할 수 있는 모델 생성다른 복잡한 모델 보다 효율적 Decision Tree 알고리즘은 많은 수의 레벨을 갖는 Feature에 대한 구분에 있어 치우는 경향이 있음모델에 대한 과다 적합 또는 미적합 되는 경..
이번 글에서는 Big Data와 직접적인 관련은 없지만 Fluctuation이 심한 데이터에 대한 경향을 살펴보는 기법 중 하나인 Moving Average에 대하여 알아본다. Moving Average에는 Simple Moving Average, Accumulative Moving Average, Weighted Moving Average, Modified Moving Average, Exponential Moving Average 등이 있으며, 이 중 가장 간단한 Simple Moving Average를 다루기로 한다. Theory & AlgorithmSimple Moving Average의 알고리즘은 매우 간단하다. n개의 데이터 윈도우사이즈(Window Size)에 대하여,최초 i개의 데이터 개수..