일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- nodeJS
- Artificial Intelligence
- node.js
- 빅 데이터
- c++
- R
- Statistics
- 빅 데이타
- Big Data
- probability
- WebGL
- 빅데이타
- data science
- 데이터 과학
- 김양재 목사
- 김양재
- Deep learning
- MongoDB
- Machine Learning
- 우리들교회
- 주일설교
- openCV
- 확률
- 몽고디비
- 김양재 목사님
- 빅데이터
- 인공지능
- 딥러닝
- 통계
- No SQL
- Today
- Total
목록deep neural network (4)
Scientific Computing & Data Science
by Geol Choi | April 11, 2017 이번 시리즈부터 R-TensorFlow 예제를 하나씩 정리해 나가기로 한다. 만약 R에 TensorFlow 개발 환경이 구축되어 있지 않다면 R에서 TensorFlow 개발환경 구축하기을 참고하기 바란다.이번 포스팅은 모든 프로그램 예제 중의 예제 HelloWorld의 R-TensorFlow 버전이다.이 예제는 단순히 화면에 "Hello, TensorFlow!"를 출력한다. TensorFlow 라이브러리 로딩하기TensorFlow 패키지가 현재 환경에 설치 되어있는지 확인하고 만약 설치되어 있지 않으면 설치하고, 해당 패키지 라이브러리를 로딩한다: R CODE:# import library if (! ("tensorflow" %in% rownames(..
Written by Geol Choi | Mar. 26, 2017 이번 포스팅에서는 자기조직화맵(Self-Organising Map; SOM)에 대하여 기본 이론, 특성, R을 이용한 구현하는 방법에 대하여 알아보도록 하겠습니다. 이론적 배경SOM 또는 SOFM(Self-Organising Feature Map)은 인공신경망(Artificial Neural Network; ANN)의 한 종류로서 기본 개념은 1980년대 핀란드 교수인 Teuvo Kohonen이 제안한 Kohonen Network에 근간을 두고 있습니다.SOM이 ANN의 한 종류이기는 하지만 "표준" ANN과는 구별되는 몇가지 특징들이 있습니다. 그 차이는 다음과 같습니다: (1) 표준 ANN은 연속적인 레이어들로 구성되는 반면, SOM은..
모두에게 개방하는 딥러닝명시적인 프로그래밍을 하지 않고 컴퓨터가 학습하도록 하는 머신러닝은 통상적으로 수학자들과 프로그래머들만이 할 수 있는 마법으로 여겨져 왔다. 한 동안 그래왔는데 그에 대해서는 여러가지 이유가 있다.코딩을 할 줄 알아야 할뿐더러 강력한 수학적 스킬이 요구되기 때문이다. 돌아갈 방법은 없지만 완전한 수학적 배경없이도 의미있는 많은 일을 할 수 있다.나는 미래에 우리의 어플리케이션을 보다 스마트하게 만들기 위해 프로그래밍을 하는 우리 모두가 어떤 형태의 딥러닝에 기여하는 과정이라고 믿는다.피쳐 엔지니어링 (Feature Engineering)보통 머신러닝을 위해 컴퓨터가 이해할 수 있는 데이터를 컴퓨터에게 공급해야 한다. 이것은 많은 행과 열로 구성되는 대규모의 스프레드시트 형태로 데이..
이 글은 Parallel R의 R for Deep Learning (I): Build Fully Connected Neural Network from Scratch를 번역한 것입니다. Source Code: GitHub: https://github.com/PatricZhao/ParallelR 이론적 배경심층 인공신경망(이하 원어 사용: Deep Neural Network; DNN)는 최근 몇년간 이미지 인식, 자연어 처리 및 자율주행차 분야에서 막대한 성과를 이루어 냈으며, 그림 1.에서 보이는 바와 같이 2012년에서 2015년 사이 DNN은 IMAGNET의 정확도를 80%에서 95%까지 끌어올렸다. 이는 전통적인 컴퓨터 비전(Computer Vision; CV) 방법론들을 꺾은 것이다. 그림 1. -..