일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- Deep learning
- 통계
- 우리들교회
- data science
- openCV
- 빅 데이타
- 데이터 과학
- MongoDB
- Artificial Intelligence
- c++
- Big Data
- 김양재
- 확률
- 빅데이타
- R
- WebGL
- 인공지능
- 몽고디비
- probability
- 김양재 목사
- 딥러닝
- nodeJS
- Statistics
- No SQL
- Machine Learning
- 주일설교
- 빅데이터
- node.js
- 김양재 목사님
- 빅 데이터
- Today
- Total
목록CNN (3)
Scientific Computing & Data Science
Written by Geol Choi | Sep. 14, 2017 지난 6월 Google Research Blog에 "Supercharge your Computer Vision models with the TensorFlow Object Detection API"라는 제목으로 상당히 흥미로운 아티클이 소개되었습니다. 요는, Google이 개발 중이던 In-house Object Detection System이 괄목할만한 결과를 얻었고 COCO Detection Challenge라는 사물인식 경진대회에서 1등을 먹었는데, 이 결과물을 TensorFlow Object Detection API를 제공하여 TensorFlow에서 사용할 수 있도록 하였다는 것입니다. 가장 중요한 것은, 단일 이미지 내에서 다중의..
by Geol Choi | Jul. 2, 2017 이번 포스팅에서는 회선신경망(Convolutional Neural Network; CNN)의 ConvNet 구조의 Conv 레이어 사이에서 이미지의 사이즈를 줄임으로써 파라미터 개수와 계산 시간을 줄이기 위한 방법으로 사용되는 풀링(Pooling)에 대해 알아보도록 한다. [이미지 출처: CS231n Convolutional Neural Networks for Visual Recognition] Theory특히 많은 양의 픽셀을 갖는 복잡한 딥러닝 문제에 있어 CNN의 계산속도를 향상시키기 위해 CNN 구조에 Pooling Layer를 포함시킨다. 풀링은 회선 레이어(Convolutional Layer)에서 이미지의 크기와 해상도를 점차 줄여나가면서 계산..
by Geol Choi | April 1, 2017 이번 포스팅에서는 R에서 h2o(https://www.h2o.ai) 라이브러리를 이용하여 MNIST 손글씨 숫자(Hand-written Digits) 이미지 데이터세트에 대하여 딥러닝 CNN(Convolutional Neural Network)을 통하여 학습을 시키고, 학습된 결과를 기반으로 테스트 데이터세트에 대하여 인식률을 계산해 보도록 하겠다. MNIST 데이터세트는 NIST라는 표준 참고용 데이터 중 일부로서 총 60,000개의 학습용 데이터세트와 10,000개의 테스트용 데이터세트로 구성된다. MNIST 데이터세트는 NIST의 오리지널 흑백 이미지를 20×20 픽셀 크기로 정규화 한 것이다. 결과 이미지들은 정규화 알고리즘을 이용하여 안티앨리어..