일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- openCV
- 인공지능
- c++
- probability
- 확률
- data science
- Artificial Intelligence
- Big Data
- 빅 데이터
- 딥러닝
- nodeJS
- 김양재
- WebGL
- Machine Learning
- 빅데이타
- 주일설교
- Statistics
- 빅 데이타
- MongoDB
- 김양재 목사님
- 통계
- 빅데이터
- No SQL
- 우리들교회
- Deep learning
- R
- 몽고디비
- 김양재 목사
- 데이터 과학
- node.js
- Today
- Total
목록Ai.I. (3)
Scientific Computing & Data Science
Written by Geol Choi | Mar. 26, 2017 이번 포스팅에서는 자기조직화맵(Self-Organising Map; SOM)에 대하여 기본 이론, 특성, R을 이용한 구현하는 방법에 대하여 알아보도록 하겠습니다. 이론적 배경SOM 또는 SOFM(Self-Organising Feature Map)은 인공신경망(Artificial Neural Network; ANN)의 한 종류로서 기본 개념은 1980년대 핀란드 교수인 Teuvo Kohonen이 제안한 Kohonen Network에 근간을 두고 있습니다.SOM이 ANN의 한 종류이기는 하지만 "표준" ANN과는 구별되는 몇가지 특징들이 있습니다. 그 차이는 다음과 같습니다: (1) 표준 ANN은 연속적인 레이어들로 구성되는 반면, SOM은..
OverviewDecision Tree 알고리즘 중 가장 알려진 것 중 하나컴퓨터 과학자 J. Ross Quinlan이 개발함Iterative Dichotomiser(ID3)에 대한 개선한 C4.5 알고리즘을 개선한 것임RuleRequest Research에서 알고리즘을 다운받을 수 있음 강점 약점 대부분의 문제에 적합함 손실 데이터를 포함한 숫자형 또는 명칭형 데이터를 다룰 수 있는 자동화 Learning Process중요하지 않은 특징 제거데이터 셋의 규모에 상관없이 사용 가능수학 배경 없이도 해석할 수 있는 모델 생성다른 복잡한 모델 보다 효율적 Decision Tree 알고리즘은 많은 수의 레벨을 갖는 Feature에 대한 구분에 있어 치우는 경향이 있음모델에 대한 과다 적합 또는 미적합 되는 경..
지난 글(k-Nearest Neighbor Algorithm)을 통해 R에서 k-NN 알고리즘 코드를 작성해 보았습니다. 이제 이 코드를 이용하여 숫자 필기 인식을 하는 R 코드를 작성해 보도록 하겠습니다. 데이터 준비우선 0~9의 숫자를 손으로 쓴 데이터를 준비합니다. 두 그룹을 준비하는데, 하나는 Training Dataset으로 사용될 그룹이며 다른 하나는 Test Dataset으로 사용될 그룹입니다. 이 데이터들은 Manning Publications의 "Machine Learning in Action"에서 제공하는 데이터를 활용하였습니다. 데이터 다운로드를 받으려면 [여기]를 클릭합니다. 해당 데이터 경로는 MLiA_SourceCode/machinelearninginaction/Ch02/digi..