일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 김양재 목사
- MongoDB
- Artificial Intelligence
- 인공지능
- R
- 우리들교회
- openCV
- Big Data
- 빅 데이타
- Machine Learning
- nodeJS
- 확률
- 주일설교
- 통계
- probability
- 빅데이타
- 김양재 목사님
- node.js
- 김양재
- 몽고디비
- Deep learning
- No SQL
- 빅 데이터
- 빅데이터
- 데이터 과학
- 딥러닝
- data science
- c++
- WebGL
- Statistics
- Today
- Total
목록회선신경망 (4)
Scientific Computing & Data Science
Written by Geol Choi | Nov. 01, 2017 이번 포스팅에서는 웹캠으로부터 입력받은 영상을 TensorFlow Object Detection API와 연동하여 오브젝트를 감지하는 방법에 대해 알아보겠습니다. 지난 포스팅을 읽지 않았다면, 먼저 읽을 것을 권장하며, Python-OpenCV에 대한 간단한 지식도 필요합니다. TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 1. - 개발환경 설정TensorFlow Object Detection API를 이용한 다물체 인식하기 Part 2. - 코드 설명 및 응용Python-OpenCV 개발환경 구축TensorFlow Object Detection API GitHub Page * 주의사항: 본 포..
Written by Geol Choi | Sep. 14, 2017 지난 6월 Google Research Blog에 "Supercharge your Computer Vision models with the TensorFlow Object Detection API"라는 제목으로 상당히 흥미로운 아티클이 소개되었습니다. 요는, Google이 개발 중이던 In-house Object Detection System이 괄목할만한 결과를 얻었고 COCO Detection Challenge라는 사물인식 경진대회에서 1등을 먹었는데, 이 결과물을 TensorFlow Object Detection API를 제공하여 TensorFlow에서 사용할 수 있도록 하였다는 것입니다. 가장 중요한 것은, 단일 이미지 내에서 다중의..
Written by Geol Choi | Jul. 15, 2017 이번 포스팅에서는 회선신경망(Convolutional Neural Network; CNN)을 이용하여 손글씨 숫자를 학습시키는 코드를 Pytnon과 R 각각에 대하여 TensorFlow에서 어떻게 구현할 수 있는지 알아보도록 한다. [목차] 1. Python-TensorFlow 2. R-TensorFlow 2.1. 라이브러리 패키지 불러오기 2.2. 입력 데이터 준비 2.3. 파라미터 정의 2.4. weights & biases 변수 정의 2.5. placeholder 변수 정의 2.6. conv2d 함수 정의 2.7. maxpool2d 함수 정의 2.8. conv_net 함수 정의 2.9. 모델 세우기 2.10. 손실함수 및 Optimi..
by Geol Choi | Jul. 2, 2017 이번 포스팅에서는 회선신경망(Convolutional Neural Network; CNN)의 ConvNet 구조의 Conv 레이어 사이에서 이미지의 사이즈를 줄임으로써 파라미터 개수와 계산 시간을 줄이기 위한 방법으로 사용되는 풀링(Pooling)에 대해 알아보도록 한다. [이미지 출처: CS231n Convolutional Neural Networks for Visual Recognition] Theory특히 많은 양의 픽셀을 갖는 복잡한 딥러닝 문제에 있어 CNN의 계산속도를 향상시키기 위해 CNN 구조에 Pooling Layer를 포함시킨다. 풀링은 회선 레이어(Convolutional Layer)에서 이미지의 크기와 해상도를 점차 줄여나가면서 계산..