일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- data science
- 주일설교
- 빅 데이터
- Big Data
- node.js
- Artificial Intelligence
- 빅 데이타
- R
- 김양재 목사님
- 김양재
- 통계
- MongoDB
- openCV
- 우리들교회
- WebGL
- probability
- 인공지능
- No SQL
- 빅데이타
- 딥러닝
- 김양재 목사
- Statistics
- 빅데이터
- Machine Learning
- 몽고디비
- nodeJS
- Deep learning
- c++
- 데이터 과학
- 확률
- Today
- Total
목록모집단 (2)
Scientific Computing & Data Science
Descriptive Statistics - Sample Statistics표본 평균(Sample Mean)데이터 세트 \(\bar{x}\)의 표본 평균은 모집단으로부터 추출된 표본 집단의 기하평균이다. 만약 n개의 데이터 세트, \(x_1, x_2,...,x_n\)으로 구성된 표본 평균은 \( \bar{x} = \displaystyle{\frac{\displaystyle{\sum_{i=1}^{n}{x_i}}}{n}} \) 입니다. 표본 평균이 갖는 의미는 다음과 같습니다:확률변수 X의 랜덤 변수의 기대값 E(X)와 동일한 개념의 "중간값"으로 생각할 수 있습니다.관찰된 데이터 세트 내에서 미지의 확률분산의 기대값에 대한 추정으로 생각할 수 있습니다.표본 미디언 (Sample Median)순서를 정한 데..
[Definition] 모집단 / 표본 / 임의 표본 / 통계학적 추론모집단(population)은 특정 확률 분포로부터 얻을 수 있는 가능한 관찰결과로 구성된다. 표본(sample)은 실험자가 측정하거나 알려지지 않은 확률 분포를 관찰하는데 사용되는 모집단의 특정 부분집합이다. 임의 표본(random sample)은 모집단으로부터 임의로 선택된 샘플의 요소이며, 이 과정은 종종 표본이 모집단의 특성을 잘 반영한다는 것을 확인하기 위해 사용된다.통계학적 추론(statistical inference)이란, 모집단으로부터 추출된 표본을 이용하여 데이터 분석을 통해 확률 밀도 함수 등과 같은 특성을 분석하는 방법을 의미한다. 다음 그림은 확률 이론과 통계학적 추론과의 관계를 설명하고 있다.[그림 1.] 확률 ..