일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 김양재
- MongoDB
- data science
- 딥러닝
- 김양재 목사
- c++
- 통계
- Deep learning
- nodeJS
- 우리들교회
- R
- 김양재 목사님
- 빅데이터
- 데이터 과학
- node.js
- Big Data
- Machine Learning
- 몽고디비
- 확률
- 빅 데이타
- 빅 데이터
- Artificial Intelligence
- 빅데이타
- 주일설교
- No SQL
- Statistics
- WebGL
- probability
- openCV
- 인공지능
- Today
- Total
Scientific Computing & Data Science
[CUDA] 자신의 GPU 카드의 Device 정보 출력하기 본문
개발환경
MS Windows 7 x64
MS Visual Studio 2012
nVidia CUDA 6.5
1. FILE > New > Project
2. New Project > Templates > NVIDIA > CUDA 6.5
3. CUDA 6.5 Runtime
4. Project Name: DeviceInfo
5. kernel.cu 코드 내용 삭제
6. 다음과 같이 코드 입력
#include <stdio.h>
int main()
{
cudaDeviceProp prop;
int count;
cudaGetDeviceCount( &count );
for (int i=0; i< count; i++) {
cudaGetDeviceProperties( &prop, i );
printf( " --- General Information for device %d ---\n", i );
printf( "Name: %s\n", prop.name );
printf( "Compute capability: %d.%d\n", prop.major, prop.minor );
printf( "Clock rate: %d\n", prop.clockRate );
printf( "Device copy overlap: " );
if (prop.deviceOverlap)
printf( "Enabled\n" );
else
printf( "Disabled\n");
printf( "Kernel execution timeout : " );
if (prop.kernelExecTimeoutEnabled)
printf( "Enabled\n" );
else
printf( "Disabled\n" );
printf( "\n" );
printf( " --- Memory Information for device %d ---\n", i );
printf( "Total global mem: %ld\n", prop.totalGlobalMem );
printf( "Total constant Mem: %ld\n", prop.totalConstMem );
printf( "Max mem pitch: %ld\n", prop.memPitch );
printf( "Texture Alignment: %ld\n", prop.textureAlignment );
printf( "\n" );
printf( " --- MP Information for device %d ---\n", i );
printf( "Multiprocessor count: %d\n", prop.multiProcessorCount );
printf( "Shared mem per mp: %ld\n", prop.sharedMemPerBlock );
printf( "Registers per mp: %d\n", prop.regsPerBlock );
printf( "Threads in warp: %d\n", prop.warpSize );
printf( "Max threads per block: %d\n", prop.maxThreadsPerBlock );
printf( "Max thread dimensions: (%d, %d, %d)\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2] );
printf( "Max grid dimensions: (%d, %d, %d)\n",prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2] );
printf( "\n" );
}
return 0;
}
7. 결과 : 각자의 Device에 따라 결과는 다르게 나옴
--- General Information for device 0 --- Name: GeForce GTX 750 Ti Compute capability: 5.0 Clock rate: 1110500 Device copy overlap: Enabled Kernel execution timeout : Enabled --- Memory Information for device 0 --- Total global mem: -2147483648 Total constant Mem: 65536 Max mem pitch: 2147483647 Texture Alignment: 512 --- MP Information for device 0 --- Multiprocessor count: 5 Shared mem per mp: 49152 Registers per mp: 65536 Threads in warp: 32 Max threads per block: 1024 Max thread dimensions: (1024, 1024, 64) Max grid dimensions: (2147483647, 65535, 65535)
'Scientific Computing > NVIDIA CUDA' 카테고리의 다른 글
[CUDA] Simulating Heat Transfer (1) | 2015.08.04 |
---|---|
[CUDA] Vector Add 예제 2. (0) | 2015.01.02 |
[CUDA] Tip / Visual Studio V11 (2012)에서 Platform Toolset 에러 발생 시 대처법 (0) | 2014.06.11 |
[GPU 기술] CUDA를 활용한 실시간 유체 시뮬레이션 구현 (0) | 2014.04.06 |
[GPU 기술] GPU 기술동향 (2) | 2014.03.30 |